import streamlit as st import pandas as pd import pickle import json from utils import create_new_features, normalize, bucketize, init_new_pred with open('./trained_model.pkl', 'rb') as file: model = pickle.load(file) with open("./min_dict.json", "r") as f: min_dict = json.load(f) with open("./max_dict.json", "r") as f: max_dict = json.load(f) st.set_page_config(layout="wide") # Create two columns: one for the city and one for the map col1, col2 = st.columns([1, 2]) # Adjust the width ratios as needed with col1: st.subheader('Features') # Display city dropdown in the first column city = st.selectbox( 'Select City', ['Algona', 'Auburn', 'Beaux Arts Village', 'Bellevue', 'Black Diamond', 'Bothell', 'Burien', 'Carnation', 'Clyde Hill', 'Covington', 'Des Moines', 'Duvall', 'Enumclaw', 'Fall City', 'Federal Way', 'Inglewood-Finn Hill', 'Issaquah', 'Kenmore', 'Kent', 'Kirkland', 'Lake Forest Park', 'Maple Valley', 'Medina', 'Mercer Island', 'Milton', 'Newcastle', 'Normandy Park', 'North Bend', 'Pacific', 'Preston', 'Ravensdale', 'Redmond', 'Renton', 'Sammamish', 'SeaTac', 'Seattle', 'Shoreline', 'Skykomish', 'Snoqualmie', 'Snoqualmie Pass', 'Tukwila', 'Vashon', 'Woodinville', 'Yarrow Point'], ) waterfront = st.checkbox('Waterfront', value=False) bedrooms = st.slider('Bedrooms', min_value=min_dict['bedrooms'], max_value=max_dict['bedrooms'], value=3) bathrooms = st.slider('Bathrooms', min_value=min_dict['bathrooms'], max_value=max_dict['bathrooms'], value=2) sqft_living = st.slider('Square Feet (Living)', min_value=min_dict['sqft_living'], max_value=max_dict['sqft_living'], value=1000) sqft_lot = st.slider('Square Feet (Lot)', min_value=min_dict['sqft_lot'], max_value=max_dict['sqft_lot'], value=2000) floors = st.slider('Floors', min_value=min_dict['floors'], max_value=max_dict['floors'], value=1) view = st.slider('View', min_value=min_dict['view'], max_value=max_dict['view'], value=0) condition = st.slider('Condition', min_value=min_dict['condition'], max_value=max_dict['condition'], value=3) sqft_above = st.slider('Square Feet (Above)', min_value=min_dict['sqft_above'], max_value=max_dict['sqft_above'], value=1000) sqft_basement = st.slider('Square Feet (Basement)', min_value=min_dict['sqft_basement'], max_value=max_dict['sqft_basement'], value=0) yr_built = st.slider('Year Built', min_value=min_dict['yr_built'], max_value=max_dict['yr_built'], value=2000) yr_renovated = st.slider('Year Renovated', min_value=min_dict['yr_renovated'], max_value=max_dict['yr_renovated'], value=2010) new_pred = init_new_pred() new_pred['bedrooms'] = bedrooms new_pred['bathrooms'] = bathrooms new_pred['sqft_living'] = sqft_living new_pred['sqft_lot'] = sqft_lot new_pred['floors'] = floors new_pred['waterfront'] = int(waterfront) new_pred['view'] = view new_pred['condition'] = condition new_pred['sqft_above'] = sqft_above new_pred['sqft_basement'] = sqft_basement new_pred['yr_built'] = yr_built new_pred['yr_renovated'] = yr_renovated new_pred[f'city_{city}'] = 1 # Process the prediction new_pred = pd.DataFrame([new_pred]) new_pred = create_new_features(new_pred) new_pred = bucketize(new_pred) new_pred = normalize(new_pred) # Predict the price predicted_price = model.predict(new_pred) # Display the map in the second column with col2: # Placeholder for displaying the predicted price at the top price_placeholder = st.empty() price_placeholder.markdown( f"

Predicted Price: ${predicted_price[0][0]:,.2f}

", unsafe_allow_html=True ) if city == 'Seattle': map_data = pd.DataFrame({ 'latitude': [47.6097, 47.6205, 47.6762], 'longitude': [-122.3331, -122.3493, -122.3198] }) elif city == 'Bellevue': map_data = pd.DataFrame({ 'latitude': [47.6101, 47.6183], 'longitude': [-122.2015, -122.2046] }) elif city == 'Algona': map_data = pd.DataFrame({ 'latitude': [47.3162], 'longitude': [-122.2295] }) elif city == 'Auburn': map_data = pd.DataFrame({ 'latitude': [47.3073], 'longitude': [-122.2284] }) elif city == 'Beaux Arts Village': map_data = pd.DataFrame({ 'latitude': [47.6141], 'longitude': [-122.2125] }) elif city == 'Black Diamond': map_data = pd.DataFrame({ 'latitude': [47.3465], 'longitude': [-121.9877] }) elif city == 'Bothell': map_data = pd.DataFrame({ 'latitude': [47.7595], 'longitude': [-122.2056] }) elif city == 'Burien': map_data = pd.DataFrame({ 'latitude': [47.4702], 'longitude': [-122.3359] }) elif city == 'Carnation': map_data = pd.DataFrame({ 'latitude': [47.6460], 'longitude': [-121.9758] }) elif city == 'Clyde Hill': map_data = pd.DataFrame({ 'latitude': [47.6330], 'longitude': [-122.2107] }) elif city == 'Covington': map_data = pd.DataFrame({ 'latitude': [47.3765], 'longitude': [-122.0288] }) elif city == 'Des Moines': map_data = pd.DataFrame({ 'latitude': [47.3840], 'longitude': [-122.3061] }) elif city == 'Duvall': map_data = pd.DataFrame({ 'latitude': [47.7332], 'longitude': [-121.9916] }) elif city == 'Enumclaw': map_data = pd.DataFrame({ 'latitude': [47.2059], 'longitude': [-121.9876] }) elif city == 'Fall City': map_data = pd.DataFrame({ 'latitude': [47.5980], 'longitude': [-121.8896] }) elif city == 'Federal Way': map_data = pd.DataFrame({ 'latitude': [47.3220], 'longitude': [-122.3126] }) elif city == 'Inglewood-Finn Hill': map_data = pd.DataFrame({ 'latitude': [47.7338], 'longitude': [-122.2780] }) elif city == 'Issaquah': map_data = pd.DataFrame({ 'latitude': [47.5410], 'longitude': [-122.0311] }) elif city == 'Kenmore': map_data = pd.DataFrame({ 'latitude': [47.7557], 'longitude': [-122.2416] }) elif city == 'Kent': map_data = pd.DataFrame({ 'latitude': [47.3809], 'longitude': [-122.2348] }) elif city == 'Kirkland': map_data = pd.DataFrame({ 'latitude': [47.6810], 'longitude': [-122.2087] }) elif city == 'Lake Forest Park': map_data = pd.DataFrame({ 'latitude': [47.7318], 'longitude': [-122.2764] }) elif city == 'Maple Valley': map_data = pd.DataFrame({ 'latitude': [47.3610], 'longitude': [-122.0240] }) elif city == 'Medina': map_data = pd.DataFrame({ 'latitude': [47.6357], 'longitude': [-122.2169] }) elif city == 'Mercer Island': map_data = pd.DataFrame({ 'latitude': [47.5703], 'longitude': [-122.2264] }) elif city == 'Milton': map_data = pd.DataFrame({ 'latitude': [47.2335], 'longitude': [-122.2730] }) elif city == 'Newcastle': map_data = pd.DataFrame({ 'latitude': [47.5477], 'longitude': [-122.1711] }) elif city == 'Normandy Park': map_data = pd.DataFrame({ 'latitude': [47.4051], 'longitude': [-122.3376] }) elif city == 'North Bend': map_data = pd.DataFrame({ 'latitude': [47.4904], 'longitude': [-121.7852] }) elif city == 'Pacific': map_data = pd.DataFrame({ 'latitude': [47.3197], 'longitude': [-122.2786] }) elif city == 'Preston': map_data = pd.DataFrame({ 'latitude': [47.5420], 'longitude': [-121.9214] }) elif city == 'Ravensdale': map_data = pd.DataFrame({ 'latitude': [47.3485], 'longitude': [-121.9807] }) elif city == 'Redmond': map_data = pd.DataFrame({ 'latitude': [47.6734], 'longitude': [-122.1215] }) elif city == 'Renton': map_data = pd.DataFrame({ 'latitude': [47.4829], 'longitude': [-122.2170] }) elif city == 'Sammamish': map_data = pd.DataFrame({ 'latitude': [47.6162], 'longitude': [-122.0394] }) elif city == 'SeaTac': map_data = pd.DataFrame({ 'latitude': [47.4484], 'longitude': [-122.3085] }) elif city == 'Shoreline': map_data = pd.DataFrame({ 'latitude': [47.7554], 'longitude': [-122.3410] }) elif city == 'Skykomish': map_data = pd.DataFrame({ 'latitude': [47.7054], 'longitude': [-121.4848] }) elif city == 'Snoqualmie': map_data = pd.DataFrame({ 'latitude': [47.5410], 'longitude': [-121.8340] }) elif city == 'Snoqualmie Pass': map_data = pd.DataFrame({ 'latitude': [47.4286], 'longitude': [-121.4420] }) elif city == 'Tukwila': map_data = pd.DataFrame({ 'latitude': [47.4835], 'longitude': [-122.2585] }) elif city == 'Vashon': map_data = pd.DataFrame({ 'latitude': [47.4337], 'longitude': [-122.4660] }) elif city == 'Woodinville': map_data = pd.DataFrame({ 'latitude': [47.7524], 'longitude': [-122.1576] }) elif city == 'Yarrow Point': map_data = pd.DataFrame({ 'latitude': [47.6348], 'longitude': [-122.2218] }) st.map(map_data, zoom=11)