import streamlit as st
import pandas as pd
import pickle
import json
from utils import create_new_features, normalize, bucketize, init_new_pred
with open('./trained_model.pkl', 'rb') as file:
model = pickle.load(file)
with open("./min_dict.json", "r") as f:
min_dict = json.load(f)
with open("./max_dict.json", "r") as f:
max_dict = json.load(f)
st.set_page_config(layout="wide")
# Create two columns: one for the city and one for the map
col1, col2 = st.columns([1, 2]) # Adjust the width ratios as needed
with col1:
st.subheader('Features')
# Display city dropdown in the first column
city = st.selectbox(
'Select City',
['Algona', 'Auburn', 'Beaux Arts Village', 'Bellevue',
'Black Diamond', 'Bothell', 'Burien', 'Carnation', 'Clyde Hill',
'Covington', 'Des Moines', 'Duvall', 'Enumclaw', 'Fall City',
'Federal Way', 'Inglewood-Finn Hill', 'Issaquah', 'Kenmore',
'Kent', 'Kirkland', 'Lake Forest Park', 'Maple Valley', 'Medina',
'Mercer Island', 'Milton', 'Newcastle', 'Normandy Park',
'North Bend', 'Pacific', 'Preston', 'Ravensdale', 'Redmond',
'Renton', 'Sammamish', 'SeaTac', 'Seattle', 'Shoreline',
'Skykomish', 'Snoqualmie', 'Snoqualmie Pass', 'Tukwila', 'Vashon',
'Woodinville', 'Yarrow Point'],
)
waterfront = st.checkbox('Waterfront', value=False)
bedrooms = st.slider('Bedrooms', min_value=min_dict['bedrooms'], max_value=max_dict['bedrooms'], value=3)
bathrooms = st.slider('Bathrooms', min_value=min_dict['bathrooms'], max_value=max_dict['bathrooms'], value=2)
sqft_living = st.slider('Square Feet (Living)', min_value=min_dict['sqft_living'], max_value=max_dict['sqft_living'], value=1000)
sqft_lot = st.slider('Square Feet (Lot)', min_value=min_dict['sqft_lot'], max_value=max_dict['sqft_lot'], value=2000)
floors = st.slider('Floors', min_value=min_dict['floors'], max_value=max_dict['floors'], value=1)
view = st.slider('View', min_value=min_dict['view'], max_value=max_dict['view'], value=0)
condition = st.slider('Condition', min_value=min_dict['condition'], max_value=max_dict['condition'], value=3)
sqft_above = st.slider('Square Feet (Above)', min_value=min_dict['sqft_above'], max_value=max_dict['sqft_above'], value=1000)
sqft_basement = st.slider('Square Feet (Basement)', min_value=min_dict['sqft_basement'], max_value=max_dict['sqft_basement'], value=0)
yr_built = st.slider('Year Built', min_value=min_dict['yr_built'], max_value=max_dict['yr_built'], value=2000)
yr_renovated = st.slider('Year Renovated', min_value=min_dict['yr_renovated'], max_value=max_dict['yr_renovated'], value=2010)
new_pred = init_new_pred()
new_pred['bedrooms'] = bedrooms
new_pred['bathrooms'] = bathrooms
new_pred['sqft_living'] = sqft_living
new_pred['sqft_lot'] = sqft_lot
new_pred['floors'] = floors
new_pred['waterfront'] = int(waterfront)
new_pred['view'] = view
new_pred['condition'] = condition
new_pred['sqft_above'] = sqft_above
new_pred['sqft_basement'] = sqft_basement
new_pred['yr_built'] = yr_built
new_pred['yr_renovated'] = yr_renovated
new_pred[f'city_{city}'] = 1
# Process the prediction
new_pred = pd.DataFrame([new_pred])
new_pred = create_new_features(new_pred)
new_pred = bucketize(new_pred)
new_pred = normalize(new_pred)
# Predict the price
predicted_price = model.predict(new_pred)
# Display the map in the second column
with col2:
# Placeholder for displaying the predicted price at the top
price_placeholder = st.empty()
price_placeholder.markdown(
f"
Predicted Price: ${predicted_price[0][0]:,.2f}
",
unsafe_allow_html=True
)
if city == 'Seattle':
map_data = pd.DataFrame({
'latitude': [47.6097, 47.6205, 47.6762],
'longitude': [-122.3331, -122.3493, -122.3198]
})
elif city == 'Bellevue':
map_data = pd.DataFrame({
'latitude': [47.6101, 47.6183],
'longitude': [-122.2015, -122.2046]
})
elif city == 'Algona':
map_data = pd.DataFrame({
'latitude': [47.3162],
'longitude': [-122.2295]
})
elif city == 'Auburn':
map_data = pd.DataFrame({
'latitude': [47.3073],
'longitude': [-122.2284]
})
elif city == 'Beaux Arts Village':
map_data = pd.DataFrame({
'latitude': [47.6141],
'longitude': [-122.2125]
})
elif city == 'Black Diamond':
map_data = pd.DataFrame({
'latitude': [47.3465],
'longitude': [-121.9877]
})
elif city == 'Bothell':
map_data = pd.DataFrame({
'latitude': [47.7595],
'longitude': [-122.2056]
})
elif city == 'Burien':
map_data = pd.DataFrame({
'latitude': [47.4702],
'longitude': [-122.3359]
})
elif city == 'Carnation':
map_data = pd.DataFrame({
'latitude': [47.6460],
'longitude': [-121.9758]
})
elif city == 'Clyde Hill':
map_data = pd.DataFrame({
'latitude': [47.6330],
'longitude': [-122.2107]
})
elif city == 'Covington':
map_data = pd.DataFrame({
'latitude': [47.3765],
'longitude': [-122.0288]
})
elif city == 'Des Moines':
map_data = pd.DataFrame({
'latitude': [47.3840],
'longitude': [-122.3061]
})
elif city == 'Duvall':
map_data = pd.DataFrame({
'latitude': [47.7332],
'longitude': [-121.9916]
})
elif city == 'Enumclaw':
map_data = pd.DataFrame({
'latitude': [47.2059],
'longitude': [-121.9876]
})
elif city == 'Fall City':
map_data = pd.DataFrame({
'latitude': [47.5980],
'longitude': [-121.8896]
})
elif city == 'Federal Way':
map_data = pd.DataFrame({
'latitude': [47.3220],
'longitude': [-122.3126]
})
elif city == 'Inglewood-Finn Hill':
map_data = pd.DataFrame({
'latitude': [47.7338],
'longitude': [-122.2780]
})
elif city == 'Issaquah':
map_data = pd.DataFrame({
'latitude': [47.5410],
'longitude': [-122.0311]
})
elif city == 'Kenmore':
map_data = pd.DataFrame({
'latitude': [47.7557],
'longitude': [-122.2416]
})
elif city == 'Kent':
map_data = pd.DataFrame({
'latitude': [47.3809],
'longitude': [-122.2348]
})
elif city == 'Kirkland':
map_data = pd.DataFrame({
'latitude': [47.6810],
'longitude': [-122.2087]
})
elif city == 'Lake Forest Park':
map_data = pd.DataFrame({
'latitude': [47.7318],
'longitude': [-122.2764]
})
elif city == 'Maple Valley':
map_data = pd.DataFrame({
'latitude': [47.3610],
'longitude': [-122.0240]
})
elif city == 'Medina':
map_data = pd.DataFrame({
'latitude': [47.6357],
'longitude': [-122.2169]
})
elif city == 'Mercer Island':
map_data = pd.DataFrame({
'latitude': [47.5703],
'longitude': [-122.2264]
})
elif city == 'Milton':
map_data = pd.DataFrame({
'latitude': [47.2335],
'longitude': [-122.2730]
})
elif city == 'Newcastle':
map_data = pd.DataFrame({
'latitude': [47.5477],
'longitude': [-122.1711]
})
elif city == 'Normandy Park':
map_data = pd.DataFrame({
'latitude': [47.4051],
'longitude': [-122.3376]
})
elif city == 'North Bend':
map_data = pd.DataFrame({
'latitude': [47.4904],
'longitude': [-121.7852]
})
elif city == 'Pacific':
map_data = pd.DataFrame({
'latitude': [47.3197],
'longitude': [-122.2786]
})
elif city == 'Preston':
map_data = pd.DataFrame({
'latitude': [47.5420],
'longitude': [-121.9214]
})
elif city == 'Ravensdale':
map_data = pd.DataFrame({
'latitude': [47.3485],
'longitude': [-121.9807]
})
elif city == 'Redmond':
map_data = pd.DataFrame({
'latitude': [47.6734],
'longitude': [-122.1215]
})
elif city == 'Renton':
map_data = pd.DataFrame({
'latitude': [47.4829],
'longitude': [-122.2170]
})
elif city == 'Sammamish':
map_data = pd.DataFrame({
'latitude': [47.6162],
'longitude': [-122.0394]
})
elif city == 'SeaTac':
map_data = pd.DataFrame({
'latitude': [47.4484],
'longitude': [-122.3085]
})
elif city == 'Shoreline':
map_data = pd.DataFrame({
'latitude': [47.7554],
'longitude': [-122.3410]
})
elif city == 'Skykomish':
map_data = pd.DataFrame({
'latitude': [47.7054],
'longitude': [-121.4848]
})
elif city == 'Snoqualmie':
map_data = pd.DataFrame({
'latitude': [47.5410],
'longitude': [-121.8340]
})
elif city == 'Snoqualmie Pass':
map_data = pd.DataFrame({
'latitude': [47.4286],
'longitude': [-121.4420]
})
elif city == 'Tukwila':
map_data = pd.DataFrame({
'latitude': [47.4835],
'longitude': [-122.2585]
})
elif city == 'Vashon':
map_data = pd.DataFrame({
'latitude': [47.4337],
'longitude': [-122.4660]
})
elif city == 'Woodinville':
map_data = pd.DataFrame({
'latitude': [47.7524],
'longitude': [-122.1576]
})
elif city == 'Yarrow Point':
map_data = pd.DataFrame({
'latitude': [47.6348],
'longitude': [-122.2218]
})
st.map(map_data, zoom=11)