import streamlit as st import pandas as pd import pickle from utils import create_new_features, normalize, init_new_pred with open('./trained_model.pkl', 'rb') as file: model = pickle.load(file) new_pred = st.text_area('Enter text') if new_pred: new_pred = init_new_pred() new_pred['bedrooms'] = 5 new_pred['bathrooms'] = 3 new_pred['sqft_living'] = 10000 new_pred['sqft_lot'] = 1000 new_pred['floors'] = 2 new_pred['waterfront'] = 1 new_pred['view'] = 3 new_pred['condition'] = 5 new_pred['sqft_above'] = 500 new_pred['sqft_basement'] = 500 new_pred['yr_built'] = 2012 new_pred['yr_renovated'] = 2013 new_pred['city_Bellevue'] = 1 new_pred = pd.DataFrame([new_pred]) new_pred = create_new_features(new_pred) new_pred = normalize(new_pred) predicted_price = model.predict(new_pred) st.json(predicted_price[0][0])