add leaderboard
Browse files- Dockerfile +21 -0
- README.md +0 -0
- app.py +43 -0
- data/leaderboard-v0_results.csv +171 -0
- draw_utils.py +57 -0
- requirements.txt +2 -0
- setup.sh +8 -0
Dockerfile
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Read the doc: https://huggingface.co/docs/hub/spaces-sdks-docker
|
2 |
+
# you will also find guides on how best to write your Dockerfile
|
3 |
+
|
4 |
+
FROM python:3.12
|
5 |
+
|
6 |
+
RUN useradd -m -u 1000 user
|
7 |
+
USER user
|
8 |
+
ENV PATH="/home/user/.local/bin:$PATH"
|
9 |
+
|
10 |
+
WORKDIR /app
|
11 |
+
|
12 |
+
COPY --chown=user . /app/
|
13 |
+
|
14 |
+
# COPY --chown=user ./requirements.txt requirements.txt
|
15 |
+
RUN pip install --no-cache-dir --upgrade -r requirements.txt
|
16 |
+
|
17 |
+
# Run setup
|
18 |
+
RUN chmod +x setup.sh
|
19 |
+
RUN ./setup.sh
|
20 |
+
|
21 |
+
CMD ["streamlit", "run", "app.py", "--server.address=0.0.0.0", "--server.port=7860"]
|
README.md
CHANGED
File without changes
|
app.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
|
3 |
+
from draw_utils import PAGE_MARKDOWN, PAGE_INFO, LENGTHS
|
4 |
+
from draw_utils import load_results, style_dataframe
|
5 |
+
|
6 |
+
st.set_page_config(layout="wide", page_title="Leaderboard App")
|
7 |
+
st.markdown(PAGE_MARKDOWN, unsafe_allow_html=True)
|
8 |
+
|
9 |
+
|
10 |
+
def draw_leaderboard():
|
11 |
+
df = load_results()
|
12 |
+
|
13 |
+
tasks = ['avg'] + [f"qa{i}" for i in range(1, 11)]
|
14 |
+
columns = ["model_name", "avg(32k)", "avg(128k)"] + LENGTHS
|
15 |
+
|
16 |
+
st.title("🔎📚🪡📚❓ BABILong Leaderboard 🏆")
|
17 |
+
st.markdown(PAGE_INFO)
|
18 |
+
st.subheader("Average Accuracy")
|
19 |
+
search_term = st.text_input("Search models:", "")
|
20 |
+
|
21 |
+
tabs = st.tabs([str(task) for task in tasks])
|
22 |
+
for i, tab in enumerate(tabs):
|
23 |
+
with tab:
|
24 |
+
task_df = df[df.task == tasks[i]][columns]
|
25 |
+
|
26 |
+
if search_term:
|
27 |
+
task_df = task_df[task_df['model_name'].str.contains(search_term, case=False)]
|
28 |
+
task_df.reset_index(drop=True, inplace=True)
|
29 |
+
|
30 |
+
row_height = 35
|
31 |
+
height = (len(task_df) + 1) * row_height
|
32 |
+
|
33 |
+
styled = style_dataframe(task_df).format(precision=2)
|
34 |
+
|
35 |
+
st.dataframe(
|
36 |
+
styled,
|
37 |
+
use_container_width=True,
|
38 |
+
height=height,
|
39 |
+
)
|
40 |
+
|
41 |
+
|
42 |
+
if __name__ == "__main__":
|
43 |
+
draw_leaderboard()
|
data/leaderboard-v0_results.csv
ADDED
@@ -0,0 +1,171 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model_name,task,0k,1k,2k,4k,8k,16k,32k,64k,128k,512k,1M,10M
|
2 |
+
GPT-2 (137M),avg,27,15,,,,,,,,,,
|
3 |
+
mamba-2.8b-hf,avg,70,52,35,9,0,,,,,,,
|
4 |
+
rwkv-6-world-7b,avg,56,55,48,35,7,,,,,,,
|
5 |
+
v5-Eagle-7B-HF,avg,62,54,48,41,2,,,,,,,
|
6 |
+
Meta-Llama-3-8B-Instruct,avg,64,60,58,50,44,,,,,,,
|
7 |
+
LLaMA-2-7B-32K,avg,41,53,45,40,39,32,3,,,,,
|
8 |
+
longchat-7b-v1.5-32k,avg,46,42,40,41,42,39,5,,,,,
|
9 |
+
LongAlpaca-13B,avg,48,47,46,43,40,36,4,,,,,
|
10 |
+
Llama-2-7B-32K-Instruct,avg,49,52,49,43,40,35,5,,,,,
|
11 |
+
01-ai/Yi-34B,avg,72,52,43,37,38,31,4,,,,,
|
12 |
+
Mistral-7b-Instruct-v0.2,avg,60,56,52,49,45,42,37,,,,,
|
13 |
+
Mixtral-8x7B-Instruct-v0.1,avg,65,63,60,55,50,46,40,,,,,
|
14 |
+
01-ai/Yi-34B-200k,avg,65,59,56,54,52,50,48,48,,,,
|
15 |
+
Mixtral-8x22B-Instruct-v0.1,avg,75,73,70,65,58,51,43,35,,,,
|
16 |
+
activation-beacon-llama2-7b-chat,avg,55,52,47,43,36,23,16,8,6,,,
|
17 |
+
Yarn-Mistral-7b-128k,avg,51,52,43,40,38,30,16,10,9,,,
|
18 |
+
chatglm3-6b-128k,avg,56,55,51,48,46,41,36,21,13,,,
|
19 |
+
activation-beacon-mistral-7b,avg,59,56,51,48,43,37,36,27,14,,,
|
20 |
+
01-ai/Yi-9B-200k,avg,52,55,48,46,45,36,37,29,24,,,
|
21 |
+
Phi-3-mini-128k-instruct,avg,64,57,55,51,50,46,42,37,7,,,
|
22 |
+
ai21labs/Jamba-v0.1,avg,65,53,50,48,46,45,41,40,34,,,
|
23 |
+
c4ai-command-r-v01,avg,64,64,63,61,59,52,51,46,38,,,
|
24 |
+
Meta-Llama-3.1-8B-Instruct,avg,67,68,66,66,62,60,56,49,39,,,
|
25 |
+
Phi-3-medium-128k-instruct,avg,72,70,67,62,60,57,53,45,30,,,
|
26 |
+
GPT-4,avg,87,81,77,74,71,64,53,43,36,,,
|
27 |
+
Meta-Llama-3.1-70B-Instruct,avg,85,81,78,74,70,65,59,53,45,,,
|
28 |
+
~ Mamba (130M) fine-tune,avg,,,,98.7,98.5,98.5,98.1,97,92.5,,,
|
29 |
+
Llama3-ChatQA-1.5-8B + RAG,avg,48,48,47,46,45,45,44,42,45,42,39,37
|
30 |
+
~ RMT (137M) fine-tune,avg,99.36,97.4,94.66,92.32,89.9,85.62,77.88,69.86,58.52,46.36,42.84,33.78
|
31 |
+
~ ARMT (137M) fine-tune,avg,99.32,,,98.1,98.2,98.1,98,97.9,96.9,95.3,93.4,76.6
|
32 |
+
GPT-2 (137M),qa1,35,13,,,,,,,,,,
|
33 |
+
mamba-2.8b-hf,qa1,65,56,40,7,1,,,,,,,
|
34 |
+
rwkv-6-world-7b,qa1,65,62,53,39,5,,,,,,,
|
35 |
+
v5-Eagle-7B-HF,qa1,68,58,52,36,3,,,,,,,
|
36 |
+
Meta-Llama-3-8B-Instruct,qa1,98,93,90,79,62,,,,,,,
|
37 |
+
LLaMA-2-7B-32K,qa1,54,57,33,26,34,32,3,,,,,
|
38 |
+
longchat-7b-v1.5-32k,qa1,52,60,56,55,50,42,4,,,,,
|
39 |
+
LongAlpaca-13B,qa1,58,55,58,50,37,23,2,,,,,
|
40 |
+
Llama-2-7B-32K-Instruct,qa1,65,61,52,41,35,23,3,,,,,
|
41 |
+
01-ai/Yi-34B,qa1,99,59,51,34,46,31,4,,,,,
|
42 |
+
Mistral-7b-Instruct-v0.2,qa1,92,86,75,64,63,57,45,,,,,
|
43 |
+
Mixtral-8x7B-Instruct-v0.1,qa1,99,92,84,77,65,53,49,,,,,
|
44 |
+
01-ai/Yi-34B-200k,qa1,85,73,68,66,63,65,62,60,,,,
|
45 |
+
Mixtral-8x22B-Instruct-v0.1,qa1,100,99,95,89,79,63,40,38,,,,
|
46 |
+
activation-beacon-llama2-7b-chat,qa1,85,81,67,65,48,21,16,6,5,,,
|
47 |
+
Yarn-Mistral-7b-128k,qa1,61,71,58,45,51,34,21,8,8,,,
|
48 |
+
chatglm3-6b-128k,qa1,82,77,74,72,67,56,47,13,13,,,
|
49 |
+
activation-beacon-mistral-7b,qa1,92,86,73,59,47,42,42,27,9,,,
|
50 |
+
01-ai/Yi-9B-200k,qa1,33,82,69,59,56,47,44,32,29,,,
|
51 |
+
Phi-3-mini-128k-instruct,qa1,97,84,72,69,70,60,53,38,1,,,
|
52 |
+
ai21labs/Jamba-v0.1,qa1,90,72,66,63,65,58,50,49,38,,,
|
53 |
+
c4ai-command-r-v01,qa1,98,95,94,91,89,68,70,50,30,,,
|
54 |
+
Phi-3-medium-128k-instruct,qa1,100,93,87,80,81,72,69,58,21,,,
|
55 |
+
GPT-4,qa1,99,100,100,95,93,84,62,58,39,,,
|
56 |
+
~ Mamba (130M) fine-tune,qa1,100,100,100,100,100,100,100,100,100,92,,
|
57 |
+
Llama3-ChatQA-1.5-8B + RAG,qa1,60,62,60,58,58,60,60,56,64,54,55,50
|
58 |
+
~ RMT (137M) fine-tune,qa1,100,100,100,100,100,100,99,96,94,87,84,66
|
59 |
+
~ ARMT (137M) fine-tune,qa1,100,,,100,100,100,100,100,100,99,99,89
|
60 |
+
GPT-2 (137M),qa2,21,17,,,,,,,,,,
|
61 |
+
mamba-2.8b-hf,qa2,68,47,24,8,0,,,,,,,
|
62 |
+
rwkv-6-world-7b,qa2,42,26,20,16,3,,,,,,,
|
63 |
+
v5-Eagle-7B-HF,qa2,43,27,25,19,2,,,,,,,
|
64 |
+
Meta-Llama-3-8B-Instruct,qa2,47,46,49,39,20,,,,,,,
|
65 |
+
LLaMA-2-7B-32K,qa2,37,40,37,26,27,21,2,,,,,
|
66 |
+
longchat-7b-v1.5-32k,qa2,31,19,14,13,18,14,2,,,,,
|
67 |
+
LongAlpaca-13B,qa2,30,30,28,29,26,18,2,,,,,
|
68 |
+
Llama-2-7B-32K-Instruct,qa2,41,40,36,27,20,16,3,,,,,
|
69 |
+
01-ai/Yi-34B,qa2,67,43,32,30,23,15,4,,,,,
|
70 |
+
Mistral-7b-Instruct-v0.2,qa2,46,34,32,22,11,9,7,,,,,
|
71 |
+
Mixtral-8x7B-Instruct-v0.1,qa2,58,51,46,35,27,18,14,,,,,
|
72 |
+
01-ai/Yi-34B-200k,qa2,62,51,46,42,35,32,27,30,,,,
|
73 |
+
Mixtral-8x22B-Instruct-v0.1,qa2,77,65,61,56,48,41,33,11,,,,
|
74 |
+
activation-beacon-llama2-7b-chat,qa2,52,37,28,25,23,11,9,4,2,,,
|
75 |
+
Yarn-Mistral-7b-128k,qa2,47,48,37,30,34,21,12,5,3,,,
|
76 |
+
chatglm3-6b-128k,qa2,51,46,45,39,38,31,24,6,5,,,
|
77 |
+
activation-beacon-mistral-7b,qa2,45,35,32,28,22,14,12,10,2,,,
|
78 |
+
01-ai/Yi-9B-200k,qa2,67,52,43,39,31,25,22,12,8,,,
|
79 |
+
Phi-3-mini-128k-instruct,qa2,57,38,38,36,34,23,22,15,2,,,
|
80 |
+
ai21labs/Jamba-v0.1,qa2,57,43,42,39,37,29,26,20,16,,,
|
81 |
+
c4ai-command-r-v01,qa2,64,58,56,54,50,39,37,32,16,,,
|
82 |
+
Phi-3-medium-128k-instruct,qa2,76,62,58,51,44,41,27,14,11,,,
|
83 |
+
GPT-4,qa2,88,79,72,68,65,59,42,25,25,,,
|
84 |
+
~ Mamba (130M) fine-tune,qa2,98,98,98,98,98,98,98,95,87,,,
|
85 |
+
Llama3-ChatQA-1.5-8B + RAG,qa2,28,25,22,19,14,13,9,7,6,6,2,2
|
86 |
+
~ RMT (137M) fine-tune,qa2,100,100,99,98,97,94,82,59,39,25,22,19
|
87 |
+
~ ARMT (137M) fine-tune,qa2,100,,,100,100,100,100,100,100,99,99,84
|
88 |
+
GPT-2 (137M),qa3,6,8,,,,,,,,,,
|
89 |
+
mamba-2.8b-hf,qa3,48,39,21,8,0,,,,,,,
|
90 |
+
rwkv-6-world-7b,qa3,40,45,28,24,4,,,,,,,
|
91 |
+
v5-Eagle-7B-HF,qa3,43,34,30,40,1,,,,,,,
|
92 |
+
Meta-Llama-3-8B-Instruct,qa3,33,28,30,26,11,,,,,,,
|
93 |
+
LLaMA-2-7B-32K,qa3,32,38,34,28,27,21,1,,,,,
|
94 |
+
longchat-7b-v1.5-32k,qa3,22,16,15,17,21,22,4,,,,,
|
95 |
+
LongAlpaca-13B,qa3,25,26,26,25,24,27,2,,,,,
|
96 |
+
Llama-2-7B-32K-Instruct,qa3,35,36,34,26,23,20,2,,,,,
|
97 |
+
01-ai/Yi-34B,qa3,45,34,24,20,17,12,4,,,,,
|
98 |
+
Mistral-7b-Instruct-v0.2,qa3,36,34,31,30,24,18,12,,,,,
|
99 |
+
Mixtral-8x7B-Instruct-v0.1,qa3,34,32,31,30,27,29,24,,,,,
|
100 |
+
01-ai/Yi-34B-200k,qa3,35,30,27,24,24,22,22,26,,,,
|
101 |
+
Mixtral-8x22B-Instruct-v0.1,qa3,53,56,49,39,31,27,26,26,,,,
|
102 |
+
activation-beacon-llama2-7b-chat,qa3,33,25,25,21,20,17,13,5,5,,,
|
103 |
+
Yarn-Mistral-7b-128k,qa3,31,36,33,32,27,25,9,13,7,,,
|
104 |
+
chatglm3-6b-128k,qa3,33,37,31,31,27,25,23,17,9,,,
|
105 |
+
activation-beacon-mistral-7b,qa3,36,33,25,21,18,15,15,15,16,,,
|
106 |
+
01-ai/Yi-9B-200k,qa3,34,33,29,24,25,21,20,20,8,,,
|
107 |
+
Phi-3-mini-128k-instruct,qa3,32,41,31,27,26,24,21,22,4,,,
|
108 |
+
ai21labs/Jamba-v0.1,qa3,32,31,29,26,24,22,22,21,26,,,
|
109 |
+
c4ai-command-r-v01,qa3,25,28,26,28,26,30,28,33,24,,,
|
110 |
+
Phi-3-medium-128k-instruct,qa3,53,51,45,35,30,30,27,25,17,,,
|
111 |
+
GPT-4,qa3,56,63,57,56,53,45,31,31,32,,,
|
112 |
+
~ Mamba (130M) fine-tune,qa3,97,97,97,97,97,96,95,92,81,,,
|
113 |
+
Llama3-ChatQA-1.5-8B + RAG,qa3,17,18,17,17,16,17,15,13,19,17,10,11
|
114 |
+
~ RMT (137M) fine-tune,qa3,97,94,88,81,73,66,55,55,36,25,22,21
|
115 |
+
~ ARMT (137M) fine-tune,qa3,97,,,92,92,92,91,90,86,80,72,37
|
116 |
+
GPT-2 (137M),qa4,29,18,,,,,,,,,,
|
117 |
+
mamba-2.8b-hf,qa4,96,59,47,12,0,,,,,,,
|
118 |
+
rwkv-6-world-7b,qa4,54,65,57,35,7,,,,,,,
|
119 |
+
v5-Eagle-7B-HF,qa4,79,74,63,55,3,,,,,,,
|
120 |
+
Meta-Llama-3-8B-Instruct,qa4,58,55,50,43,52,,,,,,,
|
121 |
+
LLaMA-2-7B-32K,qa4,26,54,51,51,46,36,3,,,,,
|
122 |
+
longchat-7b-v1.5-32k,qa4,60,55,52,57,57,49,4,,,,,
|
123 |
+
LongAlpaca-13B,qa4,65,61,58,52,50,44,4,,,,,
|
124 |
+
Llama-2-7B-32K-Instruct,qa4,39,52,54,56,55,52,6,,,,,
|
125 |
+
01-ai/Yi-34B,qa4,59,56,51,55,52,43,4,,,,,
|
126 |
+
Mistral-7b-Instruct-v0.2,qa4,54,58,58,60,60,58,54,,,,,
|
127 |
+
Mixtral-8x7B-Instruct-v0.1,qa4,55,60,59,61,63,61,58,,,,,
|
128 |
+
01-ai/Yi-34B-200k,qa4,64,65,64,63,61,56,54,44,,,,
|
129 |
+
Mixtral-8x22B-Instruct-v0.1,qa4,56,62,59,62,62,60,54,39,,,,
|
130 |
+
activation-beacon-llama2-7b-chat,qa4,40,50,52,43,34,22,14,9,10,,,
|
131 |
+
Yarn-Mistral-7b-128k,qa4,60,56,43,45,32,31,16,7,8,,,
|
132 |
+
chatglm3-6b-128k,qa4,45,48,42,38,35,32,27,13,11,,,
|
133 |
+
activation-beacon-mistral-7b,qa4,53,58,60,57,53,50,45,29,15,,,
|
134 |
+
01-ai/Yi-9B-200k,qa4,49,47,50,50,54,43,45,36,33,,,
|
135 |
+
Phi-3-mini-128k-instruct,qa4,54,56,56,50,49,50,45,47,5,,,
|
136 |
+
ai21labs/Jamba-v0.1,qa4,64,50,49,49,48,52,46,49,38,,,
|
137 |
+
c4ai-command-r-v01,qa4,46,58,59,54,56,46,46,47,52,,,
|
138 |
+
Phi-3-medium-128k-instruct,qa4,54,61,63,64,64,61,59,52,33,,,
|
139 |
+
GPT-4,qa4,98,70,63,60,52,47,46,40,32,,,
|
140 |
+
~ Mamba (130M) fine-tune,qa4,100,100,100,100,100,100,99,100,98,,,
|
141 |
+
Llama3-ChatQA-1.5-8B + RAG,qa4,53,58,56,59,57,60,60,59,60,59,54,56
|
142 |
+
~ RMT (137M) fine-tune,qa4,100,94,87,83,80,75,64,51,38,26,24,20
|
143 |
+
~ ARMT (137M) fine-tune,qa4,100,,,100,100,100,100,100,100,100,100,92
|
144 |
+
GPT-2 (137M),qa5,45,19,,,,,,,,,,
|
145 |
+
mamba-2.8b-hf,qa5,75,58,43,9,0,,,,,,,
|
146 |
+
rwkv-6-world-7b,qa5,79,77,80,61,14,,,,,,,
|
147 |
+
v5-Eagle-7B-HF,qa5,75,76,71,57,3,,,,,,,
|
148 |
+
Meta-Llama-3-8B-Instruct,qa5,85,78,73,65,73,,,,,,,
|
149 |
+
LLaMA-2-7B-32K,qa5,55,74,70,67,59,51,7,,,,,
|
150 |
+
longchat-7b-v1.5-32k,qa5,63,62,62,65,66,67,9,,,,,
|
151 |
+
LongAlpaca-13B,qa5,63,61,61,61,62,66,12,,,,,
|
152 |
+
Llama-2-7B-32K-Instruct,qa5,63,69,69,67,66,63,9,,,,,
|
153 |
+
01-ai/Yi-34B,qa5,88,70,59,48,53,55,4,,,,,
|
154 |
+
Mistral-7b-Instruct-v0.2,qa5,70,66,66,67,69,67,67,,,,,
|
155 |
+
Mixtral-8x7B-Instruct-v0.1,qa5,80,79,80,73,66,67,56,,,,,
|
156 |
+
01-ai/Yi-34B-200k,qa5,78,77,77,76,76,75,76,80,,,,
|
157 |
+
Mixtral-8x22B-Instruct-v0.1,qa5,87,84,84,79,69,64,63,63,,,,
|
158 |
+
activation-beacon-llama2-7b-chat,qa5,65,67,64,63,57,45,29,17,7,,,
|
159 |
+
Yarn-Mistral-7b-128k,qa5,58,47,45,47,47,38,23,17,19,,,
|
160 |
+
chatglm3-6b-128k,qa5,70,69,64,60,61,61,58,55,26,,,
|
161 |
+
activation-beacon-mistral-7b,qa5,68,66,66,74,74,66,67,55,28,,,
|
162 |
+
01-ai/Yi-9B-200k,qa5,76,59,50,57,57,45,52,47,40,,,
|
163 |
+
Phi-3-mini-128k-instruct,qa5,79,66,76,72,72,73,71,64,23,,,
|
164 |
+
ai21labs/Jamba-v0.1,qa5,83,70,64,62,58,64,63,60,50,,,
|
165 |
+
c4ai-command-r-v01,qa5,86,82,81,78,75,79,72,70,66,,,
|
166 |
+
Phi-3-medium-128k-instruct,qa5,77,85,84,81,82,82,81,78,69,,,
|
167 |
+
GPT-4,qa5,96,95,92,90,93,85,82,60,51,,,
|
168 |
+
~ Mamba (130M) fine-tune,qa5,98,99,98,99,99,99,98,99,98,,,
|
169 |
+
Llama3-ChatQA-1.5-8B + RAG,qa5,80,77,78,77,78,77,78,76,75,75,76,67
|
170 |
+
~ RMT (137M) fine-tune,qa5,100,100,99,99,99,94,90,89,86,69,63,44
|
171 |
+
~ ARMT (137M) fine-tune,qa5,99.6,,,98.1,98.2,98.1,98,97.9,96.9,95.3,93.4,76.6
|
draw_utils.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
PAGE_MARKDOWN = """
|
5 |
+
<style>
|
6 |
+
.reportview-container {
|
7 |
+
margin-top: -2em;
|
8 |
+
}
|
9 |
+
#MainMenu {visibility: hidden;}
|
10 |
+
.stDeployButton {display:none;}
|
11 |
+
footer {visibility: hidden;}
|
12 |
+
#stDecoration {display:none;}
|
13 |
+
</style>
|
14 |
+
"""
|
15 |
+
|
16 |
+
PAGE_INFO = """[](https://huggingface.co/datasets/booydar/babilong) | [GitHub](https://github.com/booydar/babilong) | [Paper](https://arxiv.org/abs/2406.10149) | [HF Dataset](https://huggingface.co/datasets/booydar/babilong) | [HF Dataset 1k samples per task](https://huggingface.co/datasets/RMT-team/babilong-1k-samples) |"""
|
17 |
+
|
18 |
+
LENGTHS = ['0k', '1k', '2k', '4k', '8k', '16k', '32k', '64k', '128k', '512k', '1M', '2M']
|
19 |
+
LENGTHS_32k = ['0k', '1k', '2k', '4k', '8k', '16k', '32k']
|
20 |
+
LENGTHS_128k = ['0k', '1k', '2k', '4k', '8k', '16k', '32k', '64k', '128k']
|
21 |
+
|
22 |
+
|
23 |
+
def load_results():
|
24 |
+
old_results_path = "data/leaderboard-v0_results.csv"
|
25 |
+
new_results_path = "babilong/babilong_results/all_results.csv"
|
26 |
+
old_results = pd.read_csv(old_results_path)
|
27 |
+
new_results = pd.read_csv(new_results_path)
|
28 |
+
|
29 |
+
res = pd.concat([old_results, new_results])
|
30 |
+
res.replace(-1, np.nan, inplace=True)
|
31 |
+
res['avg(32k)'] = res[LENGTHS_32k].mean(axis=1)
|
32 |
+
res['avg(128k)'] = res[LENGTHS_128k].mean(axis=1)
|
33 |
+
res.sort_values(['avg(128k)'], ascending=False, inplace=True)
|
34 |
+
|
35 |
+
return res
|
36 |
+
|
37 |
+
|
38 |
+
def style_dataframe(df):
|
39 |
+
"""
|
40 |
+
Style a pandas DataFrame with a color gradient.
|
41 |
+
"""
|
42 |
+
styled_df = df.copy()
|
43 |
+
numeric_columns = styled_df.columns[1:]
|
44 |
+
|
45 |
+
def color_scale(val):
|
46 |
+
if pd.isna(val):
|
47 |
+
return 'background-color: white; color: white'
|
48 |
+
min_val = 0
|
49 |
+
max_val = 100
|
50 |
+
normalized = (val - min_val) / (max_val - min_val) if max_val > min_val else 0.5
|
51 |
+
r = int(255 * (1 - normalized) + 144 * normalized)
|
52 |
+
g = int(204 * (1 - normalized) + 238 * normalized)
|
53 |
+
b = int(204 * (1 - normalized) + 180 * normalized)
|
54 |
+
return f'background-color: rgb({r}, {g}, {b})'
|
55 |
+
|
56 |
+
styled = styled_df.style.map(color_scale, subset=numeric_columns)
|
57 |
+
return styled
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
pandas
|
setup.sh
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
# Clone repositories
|
3 |
+
git clone https://github.com/booydar/babilong -b feat/babilong_evals_hf
|
4 |
+
git clone https://huggingface.co/datasets/RMT-team/babilong_evals babilong/babilong_evals_new
|
5 |
+
|
6 |
+
# Run the evaluation script
|
7 |
+
cd babilong
|
8 |
+
python -m babilong.collect_results --model_name all --save_path ./babilong_results --evals_path ./babilong_evals_new
|