Spaces:
Sleeping
Sleeping
RMakushkin
commited on
Commit
·
03f8214
1
Parent(s):
2152801
Update func.py
Browse files
func.py
CHANGED
@@ -15,24 +15,36 @@ def filter_by_ganre(df: pd.DataFrame, ganre_list: list):
|
|
15 |
filt_ind = filtered_df.index.to_list()
|
16 |
return filt_ind
|
17 |
|
18 |
-
def mean_pooling(model_output, attention_mask):
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
|
25 |
-
def recommendation(filt_ind: list, embeddings: np.array, user_text: str, n=10):
|
26 |
-
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
model.to(device)
|
29 |
model.eval()
|
30 |
with torch.no_grad():
|
31 |
-
|
32 |
-
outputs = model(**
|
33 |
-
|
34 |
-
|
35 |
-
cosine_similarities = cosine_similarity(embeddings[filt_ind], user_embeddings.reshape(1, -1))
|
36 |
df_res = pd.DataFrame(cosine_similarities.ravel(), columns=['cos_sim']).sort_values('cos_sim', ascending=False)
|
37 |
dict_topn = df_res.iloc[:n, :].cos_sim.to_dict()
|
38 |
-
return dict_topn
|
|
|
15 |
filt_ind = filtered_df.index.to_list()
|
16 |
return filt_ind
|
17 |
|
18 |
+
# def mean_pooling(model_output, attention_mask):
|
19 |
+
# token_embeddings = model_output['last_hidden_state']
|
20 |
+
# input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
21 |
+
# sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1)
|
22 |
+
# sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
23 |
+
# return sum_embeddings / sum_mask
|
24 |
|
25 |
+
# def recommendation(filt_ind: list, embeddings: np.array, user_text: str, n=10):
|
26 |
+
# token_user_text = tokenizer(user_text, return_tensors='pt', padding='max_length', truncation=True, max_length=512)
|
27 |
+
# user_embeddings = torch.Tensor().to(device)
|
28 |
+
# model.to(device)
|
29 |
+
# model.eval()
|
30 |
+
# with torch.no_grad():
|
31 |
+
# batch = {k: v.to(device) for k, v in token_user_text.items()}
|
32 |
+
# outputs = model(**batch)
|
33 |
+
# user_embeddings = torch.cat([user_embeddings, mean_pooling(outputs, batch['attention_mask'])])
|
34 |
+
# user_embeddings = user_embeddings.cpu().numpy()
|
35 |
+
# cosine_similarities = cosine_similarity(embeddings[filt_ind], user_embeddings.reshape(1, -1))
|
36 |
+
# df_res = pd.DataFrame(cosine_similarities.ravel(), columns=['cos_sim']).sort_values('cos_sim', ascending=False)
|
37 |
+
# dict_topn = df_res.iloc[:n, :].cos_sim.to_dict()
|
38 |
+
# return dict_topn
|
39 |
+
def recommendation(filt_ind: list, embeddings:np.array, user_text: str, n=10):
|
40 |
+
tokens = tokenizer(user_text, return_tensors="pt", padding=True, truncation=True)
|
41 |
model.to(device)
|
42 |
model.eval()
|
43 |
with torch.no_grad():
|
44 |
+
tokens = {key: value.to(model.device) for key, value in tokens.items()}
|
45 |
+
outputs = model(**tokens)
|
46 |
+
user_embedding = outputs.last_hidden_state.mean(dim=1).squeeze().cpu().detach().numpy()
|
47 |
+
cosine_similarities = cosine_similarity(embeddings[filt_ind], user_embedding.reshape(1, -1))
|
|
|
48 |
df_res = pd.DataFrame(cosine_similarities.ravel(), columns=['cos_sim']).sort_values('cos_sim', ascending=False)
|
49 |
dict_topn = df_res.iloc[:n, :].cos_sim.to_dict()
|
50 |
+
return dict_topn
|