File size: 4,265 Bytes
31f986f
 
 
 
7b26682
31f986f
 
 
 
7b26682
31f986f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b26682
31f986f
 
 
7b26682
 
31f986f
 
 
 
 
 
7b26682
 
 
 
31f986f
 
 
 
 
 
 
7b26682
 
 
 
31f986f
 
 
 
 
 
 
 
 
7b26682
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31f986f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b26682
31f986f
 
 
 
 
7b26682
 
 
 
 
 
 
 
 
 
31f986f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import gradio as gr

import os


def load_html(html_file: str):
    with open(os.path.join("html", html_file), "r") as f:
        return f.read()


def load_protein_from_file(protein_file) -> str:
    """
    Parameters
    ----------
    protein_file: _TemporaryFileWrapper
        GradIO file object

    Returns
    -------
    str
        Protein PDB file content
    """
    with open(protein_file.name, "r") as f:
        return f.read()


def load_ligand_from_file(ligand_file):
    with open(ligand_file.name, "r") as f:
        return f.read()


def protein_html_from_file(protein_file):
    protein = load_protein_from_file(protein_file)
    protein_html = load_html("protein.html")

    html = protein_html.replace("%%%PDB%%%", protein)

    wrapper = load_html("wrapper.html")

    return wrapper.replace("%%%HTML%%%", html)


def ligand_html_from_file(ligand_file):
    ligand = load_ligand_from_file(ligand_file)
    ligand_html = load_html("ligand.html")

    html = ligand_html.replace("%%%SDF%%%", ligand)

    wrapper = load_html("wrapper.html")

    return wrapper.replace("%%%HTML%%%", html)


def protein_ligand_html_from_file(protein_file, ligand_file):
    protein = load_protein_from_file(protein_file)
    ligand = load_ligand_from_file(ligand_file)
    protein_ligand_html = load_html("pl.html")

    html = protein_ligand_html.replace("%%%PDB%%%", protein)
    html = html.replace("%%%SDF%%%", ligand)

    wrapper = load_html("wrapper.html")

    return wrapper.replace("%%%HTML%%%", html)


def predict(protein_file, ligand_file, cnn="default"):
    import molgrid
    from gninatorch import gnina, dataloaders
    import torch
    import pandas as pd

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    print(device)

    model, ensemble = gnina.setup_gnina_model(cnn, 23.5, 0.5)
    model.eval()
    model.to(device)

    example_provider = molgrid.ExampleProvider(
        data_root="",
        balanced=False,
        shuffle=False,
        default_batch_size=1,
        iteration_scheme=molgrid.IterationScheme.SmallEpoch,
    )

    with open("data.in", "w") as f:
        f.write(protein_file.name)
        f.write(" ")
        f.write(ligand_file.name)

    print("Populating example provider... ", end="")
    example_provider.populate("data.in")
    print("done")

    grid_maker = molgrid.GridMaker(resolution=0.5, dimension=23.5)

    # TODO: Allow average over different rotations
    loader = dataloaders.GriddedExamplesLoader(
        example_provider=example_provider,
        grid_maker=grid_maker,
        random_translation=0.0,  # No random translations for inference
        random_rotation=False,  # No random rotations for inference
        grids_only=True,
        device=device,
    )

    print("Loading and gridding data... ", end="")
    batch = next(loader)
    print("done")

    print("Predicting... ", end="")
    with torch.no_grad():
        log_pose, affinity, affinity_var = model(batch)
    print("done")

    return pd.DataFrame(
        {
            "CNNscore": [torch.exp(log_pose[:, -1]).item()],
            "CNNaffinity": [affinity.item()],
            "CNNvariance": [affinity_var.item()],
        }
    )


demo = gr.Blocks()

with demo:
    gr.Markdown("# Protein and Ligand")
    with gr.Row():
        with gr.Box():
            pfile = gr.File(file_count="single")
            pbtn = gr.Button("View")

            protein = gr.HTML()
            pbtn.click(fn=protein_html_from_file, inputs=[pfile], outputs=protein)

        with gr.Box():
            lfile = gr.File(file_count="single")
            lbtn = gr.Button("View")

            ligand = gr.HTML()
            lbtn.click(fn=ligand_html_from_file, inputs=[lfile], outputs=ligand)

    gr.Markdown("# Protein-Ligand Complex")
    with gr.Row():
        plcomplex = gr.HTML()

        # TODO: Automatically display complex when both files are uploaded
        plbtn = gr.Button("View")
        plbtn.click(
            fn=protein_ligand_html_from_file, inputs=[pfile, lfile], outputs=plcomplex
        )

    gr.Markdown("# Gnina-Torch")
    with gr.Row():
        df = gr.Dataframe()
        btn = gr.Button("Score!")
        btn.click(fn=predict, inputs=[pfile, lfile], outputs=df)


demo.launch()