File size: 7,381 Bytes
31f986f
 
7b26682
0e0c2ea
 
 
 
 
 
 
 
 
 
 
 
 
 
31f986f
 
 
7b26682
31f986f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b26682
0e0c2ea
 
 
 
 
 
 
 
 
 
 
 
 
 
31f986f
 
7b26682
 
0e0c2ea
 
 
 
 
 
 
 
 
 
 
 
 
 
31f986f
 
 
 
 
7b26682
 
 
 
31f986f
0e0c2ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31f986f
 
 
 
 
7b26682
 
 
 
31f986f
 
 
 
 
 
 
 
 
7b26682
 
 
 
 
0e0c2ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b26682
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e0c2ea
7b26682
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c55f95e
7b26682
31f986f
0e0c2ea
 
31f986f
0e0c2ea
31f986f
0e0c2ea
 
 
 
 
 
 
7b26682
 
0e0c2ea
 
 
aed59e3
 
0e0c2ea
 
 
 
aed59e3
0e0c2ea
 
 
 
 
 
aed59e3
0e0c2ea
 
 
 
aed59e3
 
 
0e0c2ea
aed59e3
 
 
 
 
 
 
0e0c2ea
 
aed59e3
 
 
 
 
 
0e0c2ea
 
aed59e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e0c2ea
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import os


def load_html(html_file: str) -> str:
    """
    Load file from HTML directory.

    Parameters
    ----------
    html_file: str
        HTML file name

    Returns
    -------
    str
        HTML file content
    """
    with open(os.path.join("html", html_file), "r") as f:
        return f.read()


def load_protein_from_file(protein_file) -> str:
    """
    Parameters
    ----------
    protein_file: _TemporaryFileWrapper
        GradIO file object

    Returns
    -------
    str
        Protein PDB file content
    """
    with open(protein_file.name, "r") as f:
        return f.read()


def load_ligand_from_file(ligand_file) -> str:
    """
    Load ligand from file.

    Parameters
    ----------
    ligand_file: _TemporaryFileWrapper
        GradIO file object

    Returns
    -------
    str
        Ligand SDF file content
    """
    with open(ligand_file.name, "r") as f:
        return f.read()


def protein_html_from_file(protein_file) -> str:
    """
    Wrap 3Dmol.js code around protein PDB file.

    Parameters
    ----------
    protein_file: _TemporaryFileWrapper
        GradIO file object

    Returns
    -------
    str
        3Dmol.js HTML code for displaying a PDB file
    """
    protein = load_protein_from_file(protein_file)
    protein_html = load_html("protein.html")

    html = protein_html.replace("%%%PDB%%%", protein)

    wrapper = load_html("wrapper.html")

    return wrapper.replace("%%%HTML%%%", html)


def ligand_html_from_file(ligand_file) -> str:
    """
    Wrap 3Dmol.js code around ligand SDF file.

    Parameters
    ----------
    ligand_file: _TemporaryFileWrapper
        GradIO file object

    Returns
    -------
    str
        3Dmol.js HTML code for displaying a SDF file
    """

    ligand = load_ligand_from_file(ligand_file)
    ligand_html = load_html("ligand.html")

    html = ligand_html.replace("%%%SDF%%%", ligand)

    wrapper = load_html("wrapper.html")

    return wrapper.replace("%%%HTML%%%", html)


def protein_ligand_html_from_file(protein_file, ligand_file):
    protein = load_protein_from_file(protein_file)
    ligand = load_ligand_from_file(ligand_file)
    protein_ligand_html = load_html("pl.html")

    html = protein_ligand_html.replace("%%%PDB%%%", protein)
    html = html.replace("%%%SDF%%%", ligand)

    wrapper = load_html("wrapper.html")

    return wrapper.replace("%%%HTML%%%", html)


def predict(protein_file, ligand_file, cnn: str = "default"):
    """
    Run gnina-torch on protein-ligand complex.

    Parameters
    ----------
    protein_file: _TemporaryFileWrapper
        GradIO file object
    ligand_file: _TemporaryFileWrapper
        GradIO file object
    cnn: str
        CNN model to use

    Returns
    -------
    dict[str, float]
        CNNscore, CNNaffinity, and CNNvariance
    """
    import molgrid
    from gninatorch import gnina, dataloaders
    import torch
    import pandas as pd

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    print(device)

    model, ensemble = gnina.setup_gnina_model(cnn, 23.5, 0.5)
    model.eval()
    model.to(device)

    example_provider = molgrid.ExampleProvider(
        data_root="",
        balanced=False,
        shuffle=False,
        default_batch_size=1,
        iteration_scheme=molgrid.IterationScheme.SmallEpoch,
    )

    # FIXME: Do this properly... =( [Might require light gnina-torch refactoring]
    with open("data.in", "w") as f:
        f.write(protein_file.name)
        f.write(" ")
        f.write(ligand_file.name)

    print("Populating example provider... ", end="")
    example_provider.populate("data.in")
    print("done")

    grid_maker = molgrid.GridMaker(resolution=0.5, dimension=23.5)

    # TODO: Allow average over different rotations
    loader = dataloaders.GriddedExamplesLoader(
        example_provider=example_provider,
        grid_maker=grid_maker,
        random_translation=0.0,  # No random translations for inference
        random_rotation=False,  # No random rotations for inference
        grids_only=True,
        device=device,
    )

    print("Loading and gridding data... ", end="")
    batch = next(loader)
    print("done")

    print("Predicting... ", end="")
    with torch.no_grad():
        log_pose, affinity, affinity_var = model(batch)
    print("done")

    return pd.DataFrame(
        {
            "CNNscore": [torch.exp(log_pose[:, -1]).item()],
            "CNNaffinity": [affinity.item()],
            "CNNvariance": [affinity_var.item()],
        }
    ).round(6)


if __name__ == "__main__":
    import gradio as gr

    demo = gr.Blocks()

    with demo:
        gr.Markdown("# Gnina-Torch")
        gr.Markdown(
            "Score your protein-ligand compex and predict the binding affinity with [Gnina]"
            + "(https://github.com/gnina/gnina)'s scoring function. Poewerd by [gnina-torch]"
            + "(https://github.com/RMeli/gnina-torch), a PyTorch implementation of Gnina's"
            + " scoring function."
        )

        gr.Markdown("## Protein and Ligand")
        gr.Markdown(
            "Upload your protein and ligand files in PDB and SDF format, respectively."
            + "Optionally, you can visualise the protein, the ligand, and the"
            + "protein-ligand complex."
        )
        with gr.Row():
            with gr.Box():
                pfile = gr.File(file_count="single", label="Protein file (PDB)")
                pbtn = gr.Button("View Protein")

                protein = gr.HTML()
                pbtn.click(fn=protein_html_from_file, inputs=[pfile], outputs=protein)

            with gr.Box():
                lfile = gr.File(file_count="single", label="Ligand file (SDF)")
                lbtn = gr.Button("View Ligand")

                ligand = gr.HTML()
                lbtn.click(fn=ligand_html_from_file, inputs=[lfile], outputs=ligand)

            with gr.Box():
                with gr.Column():
                    plcomplex = gr.HTML()

                    # TODO: Automatically display complex when both files are uploaded
                    plbtn = gr.Button("View Protein-Ligand Complex")
                    plbtn.click(
                        fn=protein_ligand_html_from_file,
                        inputs=[pfile, lfile],
                        outputs=plcomplex,
                    )

        gr.Markdown("## Gnina-Torch")
        gr.Markdown(
            "Score your protein-ligand complex with [gnina-torch]"
            + "(https://github.com/RMeli/gnina-torch). You can choose between different"
            + "pre-trained Gnina models. See [McNutte et al. (2021)]"
            + "(https://doi.org/10.1186/s13321-021-00522-2) for more details."
        )
        with gr.Row():
            df = gr.Dataframe()

            with gr.Column():
                dd = gr.Dropdown(
                    choices=[
                        "default",
                        "redock_default2018_ensemble",
                        "general_default2018_ensemble",
                        "crossdock_default2018_ensemble",
                    ],
                    value="default",
                    label="CNN model",
                )

                with gr.Row():
                    btn = gr.Button("Score!")
                    btn.click(fn=predict, inputs=[pfile, lfile, dd], outputs=df)

    demo.launch()