sentimentAnalysis / sentimentAnalysisITA.py
RS00's picture
prova
821134d
raw
history blame
874 Bytes
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
import gradio as gr
pipe = pipeline("text-classification", model="Taraassss/sentiment_analysis_IT")
tokenizer = AutoTokenizer.from_pretrained("Taraassss/sentiment_analysis_IT")
model = AutoModelForSequenceClassification.from_pretrained("Taraassss/sentiment_analysis_IT")
def sentiment_analysis(text):
result = pipe(text)
sentiment = result[0]['label']
score = result[0]['score'] # Confidenza del modello
return f"Sentiment: {sentiment}, Confidence: {score:.2f}"
iface = gr.Interface(
fn=sentiment_analysis,
inputs=gr.Textbox(lines=2, placeholder="Inserisci il testo da analizzare..."),
outputs="text",
title="Analisi del Sentimento Italiano",
description="Inserisci una frase in italiano per analizzare il sentimento.",
)
iface.launch()