Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,24 +1,15 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
-
from googletrans import Translator
|
4 |
-
from textblob import TextBlob
|
5 |
import nltk
|
6 |
from nltk.tokenize import word_tokenize
|
7 |
from nltk.corpus import stopwords
|
8 |
from nltk.stem import WordNetLemmatizer
|
9 |
-
from gtts import gTTS
|
10 |
-
import tempfile
|
11 |
-
import os
|
12 |
|
13 |
# Download necessary NLTK data
|
14 |
nltk.download('punkt', quiet=True)
|
15 |
nltk.download('stopwords', quiet=True)
|
16 |
nltk.download('wordnet', quiet=True)
|
17 |
|
18 |
-
# Initialize components
|
19 |
-
recognizer = sr.Recognizer()
|
20 |
-
translator = Translator()
|
21 |
-
|
22 |
def natural_language_understanding(text):
|
23 |
tokens = word_tokenize(text.lower())
|
24 |
stop_words = set(stopwords.words('english'))
|
@@ -27,82 +18,42 @@ def natural_language_understanding(text):
|
|
27 |
return " ".join(processed_tokens)
|
28 |
|
29 |
def translate_text(text, target_language):
|
30 |
-
|
31 |
-
return
|
32 |
-
|
33 |
-
def text_to_speech(text):
|
34 |
-
tts = gTTS(text)
|
35 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as fp:
|
36 |
-
tts.save(fp.name)
|
37 |
-
return fp.name
|
38 |
-
|
39 |
-
def process_input(input_text, input_audio, feature, target_language, output_language):
|
40 |
-
if input_audio is not None:
|
41 |
-
# Process audio input
|
42 |
-
try:
|
43 |
-
with sr.AudioFile(input_audio) as source:
|
44 |
-
audio = recognizer.record(source)
|
45 |
-
input_text = recognizer.recognize_google(audio)
|
46 |
-
except sr.UnknownValueError:
|
47 |
-
return "Could not understand audio", None
|
48 |
-
except sr.RequestError:
|
49 |
-
return "Could not request results from speech recognition service", None
|
50 |
-
except Exception as e:
|
51 |
-
return f"An error occurred: {str(e)}", None
|
52 |
|
|
|
53 |
if not input_text:
|
54 |
-
return "No input provided"
|
55 |
|
56 |
processed_text = natural_language_understanding(input_text)
|
57 |
|
58 |
if feature == "Translation":
|
59 |
result = translate_text(processed_text, target_language)
|
60 |
-
elif feature == "Voice Command":
|
61 |
-
result = "Voice command feature not implemented in this example"
|
62 |
elif feature == "Transcription":
|
63 |
result = processed_text
|
64 |
else:
|
65 |
result = "Invalid feature selected"
|
66 |
|
67 |
-
|
68 |
-
result = translate_text(result, output_language)
|
69 |
-
|
70 |
-
return result, None
|
71 |
-
|
72 |
-
def tts_function(text):
|
73 |
-
if text:
|
74 |
-
return text_to_speech(text)
|
75 |
-
return None
|
76 |
|
77 |
# Create Gradio interface
|
78 |
with gr.Blocks() as demo:
|
79 |
gr.Markdown("# The Advanced Multi-Faceted Chatbot")
|
80 |
-
gr.Markdown("Enter text
|
81 |
|
82 |
-
|
83 |
-
input_text = gr.Textbox(label="Input Text")
|
84 |
-
input_audio = gr.Audio(label="Input Audio", type="filepath")
|
85 |
|
86 |
with gr.Row():
|
87 |
-
feature = gr.Radio(["Translation", "
|
88 |
-
target_language = gr.Textbox(label="Target Language ")
|
89 |
-
output_language = gr.Textbox(label="Output Language ")
|
90 |
|
91 |
submit_button = gr.Button("Process")
|
92 |
result_text = gr.Textbox(label="Result")
|
93 |
-
tts_button = gr.Button("Convert to Speech")
|
94 |
-
audio_output = gr.Audio(label="Audio Output")
|
95 |
|
96 |
submit_button.click(
|
97 |
process_input,
|
98 |
-
inputs=[input_text,
|
99 |
-
outputs=
|
100 |
-
)
|
101 |
-
|
102 |
-
tts_button.click(
|
103 |
-
tts_function,
|
104 |
-
inputs=[result_text],
|
105 |
-
outputs=[audio_output]
|
106 |
)
|
107 |
|
108 |
# Launch the interface
|
|
|
1 |
import gradio as gr
|
2 |
+
from deep_translator import GoogleTranslator
|
|
|
|
|
3 |
import nltk
|
4 |
from nltk.tokenize import word_tokenize
|
5 |
from nltk.corpus import stopwords
|
6 |
from nltk.stem import WordNetLemmatizer
|
|
|
|
|
|
|
7 |
|
8 |
# Download necessary NLTK data
|
9 |
nltk.download('punkt', quiet=True)
|
10 |
nltk.download('stopwords', quiet=True)
|
11 |
nltk.download('wordnet', quiet=True)
|
12 |
|
|
|
|
|
|
|
|
|
13 |
def natural_language_understanding(text):
|
14 |
tokens = word_tokenize(text.lower())
|
15 |
stop_words = set(stopwords.words('english'))
|
|
|
18 |
return " ".join(processed_tokens)
|
19 |
|
20 |
def translate_text(text, target_language):
|
21 |
+
translator = GoogleTranslator(source='auto', target=target_language)
|
22 |
+
return translator.translate(text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
+
def process_input(input_text, feature, target_language):
|
25 |
if not input_text:
|
26 |
+
return "No input provided"
|
27 |
|
28 |
processed_text = natural_language_understanding(input_text)
|
29 |
|
30 |
if feature == "Translation":
|
31 |
result = translate_text(processed_text, target_language)
|
|
|
|
|
32 |
elif feature == "Transcription":
|
33 |
result = processed_text
|
34 |
else:
|
35 |
result = "Invalid feature selected"
|
36 |
|
37 |
+
return result
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
# Create Gradio interface
|
40 |
with gr.Blocks() as demo:
|
41 |
gr.Markdown("# The Advanced Multi-Faceted Chatbot")
|
42 |
+
gr.Markdown("Enter text to interact with the chatbot. Choose a feature and specify language for translation if needed.")
|
43 |
|
44 |
+
input_text = gr.Textbox(label="Input Text")
|
|
|
|
|
45 |
|
46 |
with gr.Row():
|
47 |
+
feature = gr.Radio(["Translation", "Transcription"], label="Feature")
|
48 |
+
target_language = gr.Textbox(label="Target Language (e.g., 'fr' for French)")
|
|
|
49 |
|
50 |
submit_button = gr.Button("Process")
|
51 |
result_text = gr.Textbox(label="Result")
|
|
|
|
|
52 |
|
53 |
submit_button.click(
|
54 |
process_input,
|
55 |
+
inputs=[input_text, feature, target_language],
|
56 |
+
outputs=result_text
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
)
|
58 |
|
59 |
# Launch the interface
|