Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,14 @@
|
|
1 |
-
import
|
2 |
from googletrans import Translator
|
|
|
3 |
import nltk
|
4 |
from nltk.tokenize import word_tokenize
|
5 |
from nltk.corpus import stopwords
|
6 |
from nltk.stem import WordNetLemmatizer
|
|
|
|
|
|
|
|
|
7 |
|
8 |
# Download necessary NLTK data
|
9 |
nltk.download('punkt', quiet=True)
|
@@ -11,6 +16,7 @@ nltk.download('stopwords', quiet=True)
|
|
11 |
nltk.download('wordnet', quiet=True)
|
12 |
|
13 |
# Initialize components
|
|
|
14 |
translator = Translator()
|
15 |
|
16 |
def natural_language_understanding(text):
|
@@ -24,33 +30,80 @@ def translate_text(text, target_language):
|
|
24 |
translated = translator.translate(text, dest=target_language)
|
25 |
return translated.text
|
26 |
|
27 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
if not input_text:
|
29 |
-
return "No input provided"
|
30 |
|
31 |
processed_text = natural_language_understanding(input_text)
|
32 |
|
33 |
if feature == "Translation":
|
34 |
result = translate_text(processed_text, target_language)
|
|
|
|
|
35 |
elif feature == "Transcription":
|
36 |
result = processed_text
|
37 |
else:
|
38 |
result = "Invalid feature selected"
|
39 |
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
# Create Gradio interface
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
gr.Textbox(label="
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
# Launch the interface
|
56 |
iface.launch(inline = False)
|
|
|
1 |
+
import speech_recognition as sr
|
2 |
from googletrans import Translator
|
3 |
+
from textblob import TextBlob
|
4 |
import nltk
|
5 |
from nltk.tokenize import word_tokenize
|
6 |
from nltk.corpus import stopwords
|
7 |
from nltk.stem import WordNetLemmatizer
|
8 |
+
from gtts import gTTS
|
9 |
+
import gradio as gr
|
10 |
+
import tempfile
|
11 |
+
import os
|
12 |
|
13 |
# Download necessary NLTK data
|
14 |
nltk.download('punkt', quiet=True)
|
|
|
16 |
nltk.download('wordnet', quiet=True)
|
17 |
|
18 |
# Initialize components
|
19 |
+
recognizer = sr.Recognizer()
|
20 |
translator = Translator()
|
21 |
|
22 |
def natural_language_understanding(text):
|
|
|
30 |
translated = translator.translate(text, dest=target_language)
|
31 |
return translated.text
|
32 |
|
33 |
+
def text_to_speech(text):
|
34 |
+
tts = gTTS(text)
|
35 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as fp:
|
36 |
+
tts.save(fp.name)
|
37 |
+
return fp.name
|
38 |
+
|
39 |
+
def process_input(input_text, input_audio, feature, target_language, output_language):
|
40 |
+
if input_audio is not None:
|
41 |
+
# Process audio input
|
42 |
+
try:
|
43 |
+
with sr.AudioFile(input_audio) as source:
|
44 |
+
audio = recognizer.record(source)
|
45 |
+
input_text = recognizer.recognize_google(audio)
|
46 |
+
except sr.UnknownValueError:
|
47 |
+
return "Could not understand audio", None
|
48 |
+
except sr.RequestError:
|
49 |
+
return "Could not request results from speech recognition service", None
|
50 |
+
except Exception as e:
|
51 |
+
return f"An error occurred: {str(e)}", None
|
52 |
+
|
53 |
if not input_text:
|
54 |
+
return "No input provided", None
|
55 |
|
56 |
processed_text = natural_language_understanding(input_text)
|
57 |
|
58 |
if feature == "Translation":
|
59 |
result = translate_text(processed_text, target_language)
|
60 |
+
elif feature == "Voice Command":
|
61 |
+
result = "Voice command feature not implemented in this example"
|
62 |
elif feature == "Transcription":
|
63 |
result = processed_text
|
64 |
else:
|
65 |
result = "Invalid feature selected"
|
66 |
|
67 |
+
if output_language:
|
68 |
+
result = translate_text(result, output_language)
|
69 |
+
|
70 |
+
return result, None
|
71 |
+
|
72 |
+
def tts_function(text):
|
73 |
+
if text:
|
74 |
+
return text_to_speech(text)
|
75 |
+
return None
|
76 |
|
77 |
# Create Gradio interface
|
78 |
+
with gr.Blocks() as iface:
|
79 |
+
gr.Markdown("# The Advanced Multi-Faceted Chatbot")
|
80 |
+
gr.Markdown("Enter text or speak to interact with the chatbot. Choose a feature and specify languages for translation if needed.")
|
81 |
+
|
82 |
+
with gr.Row():
|
83 |
+
input_text = gr.Textbox(label="Input Text")
|
84 |
+
input_audio = gr.Audio(label="Input Audio", type="filepath")
|
85 |
+
|
86 |
+
with gr.Row():
|
87 |
+
feature = gr.Radio(["Translation", "Voice Command", "Transcription"], label="Feature")
|
88 |
+
target_language = gr.Textbox(label="Target Language")
|
89 |
+
output_language = gr.Textbox(label="Output Language")
|
90 |
+
|
91 |
+
submit_button = gr.Button("Process")
|
92 |
+
result_text = gr.Textbox(label="Result")
|
93 |
+
tts_button = gr.Button("Convert to Speech")
|
94 |
+
audio_output = gr.Audio(label="Audio Output")
|
95 |
+
|
96 |
+
submit_button.click(
|
97 |
+
process_input,
|
98 |
+
inputs=[input_text, input_audio, feature, target_language, output_language],
|
99 |
+
outputs=[result_text, audio_output]
|
100 |
+
)
|
101 |
+
|
102 |
+
tts_button.click(
|
103 |
+
tts_function,
|
104 |
+
inputs=[result_text],
|
105 |
+
outputs=[audio_output]
|
106 |
+
)
|
107 |
|
108 |
# Launch the interface
|
109 |
iface.launch(inline = False)
|