import gradio as gr from deep_translator import GoogleTranslator import nltk from nltk.tokenize import word_tokenize from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer # Download necessary NLTK data nltk.download('punkt', quiet=True) nltk.download('stopwords', quiet=True) nltk.download('wordnet', quiet=True) def natural_language_understanding(text): tokens = word_tokenize(text.lower()) stop_words = set(stopwords.words('english')) lemmatizer = WordNetLemmatizer() processed_tokens = [lemmatizer.lemmatize(token) for token in tokens if token not in stop_words] return " ".join(processed_tokens) def translate_text(text, target_language): translator = GoogleTranslator(source='auto', target=target_language) return translator.translate(text) def process_input(input_text, feature, target_language): if not input_text: return "No input provided" processed_text = natural_language_understanding(input_text) if feature == "Translation": result = translate_text(processed_text, target_language) elif feature == "Transcription": result = processed_text else: result = "Invalid feature selected" return result # Create Gradio interface with gr.Blocks() as demo: gr.Markdown("# The Advanced Multi-Faceted Chatbot") gr.Markdown("Enter text to interact with the chatbot. Choose a feature and specify language for translation if needed.") input_text = gr.Textbox(label="Input Text") with gr.Row(): feature = gr.Radio(["Translation", "Transcription"], label="Feature") target_language = gr.Textbox(label="Target Language (e.g., 'fr' for French)") submit_button = gr.Button("Process") result_text = gr.Textbox(label="Result") submit_button.click( process_input, inputs=[input_text, feature, target_language], outputs=result_text ) # Launch the interface demo.launch()