File size: 6,196 Bytes
b9cd4c4
 
 
 
 
 
30566f3
b9cd4c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a1a736
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30566f3
 
 
2a1a736
 
30566f3
 
2a1a736
 
 
 
30566f3
2a1a736
 
 
 
 
 
 
 
 
 
 
 
30566f3
 
 
 
 
 
 
2a1a736
30566f3
 
2a1a736
 
30566f3
 
2a1a736
 
30566f3
 
 
 
2a1a736
30566f3
 
 
 
 
2a1a736
30566f3
2a1a736
 
 
 
b9cd4c4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import time

import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from scipy import stats as st

from config import FPS


def plot_comparison(lims, D, I, hash_vectors, MIN_DISTANCE = 3):
    sns.set_theme()

    x = [(lims[i+1]-lims[i]) * [i] for i in range(hash_vectors.shape[0])]
    x = [i/FPS for j in x for i in j]
    y = [i/FPS for i in I]
    
    # Create figure and dataframe to plot with sns
    fig = plt.figure()
    # plt.tight_layout()
    df = pd.DataFrame(zip(x, y), columns = ['X', 'Y'])
    g = sns.scatterplot(data=df, x='X', y='Y', s=2*(1-D/(MIN_DISTANCE+1)), alpha=1-D/MIN_DISTANCE)

    # Set x-labels to be more readable
    x_locs, x_labels = plt.xticks() # Get original locations and labels for x ticks
    x_labels = [time.strftime('%H:%M:%S', time.gmtime(x)) for x in x_locs]
    plt.xticks(x_locs, x_labels)
    plt.xticks(rotation=90)
    plt.xlabel('Time in source video (H:M:S)')
    plt.xlim(0, None)

    # Set y-labels to be more readable
    y_locs, y_labels = plt.yticks() # Get original locations and labels for x ticks
    y_labels = [time.strftime('%H:%M:%S', time.gmtime(y)) for y in y_locs]
    plt.yticks(y_locs, y_labels)
    plt.ylabel('Time in target video (H:M:S)')

    # Adjust padding to fit gradio
    plt.subplots_adjust(bottom=0.25, left=0.20)
    return fig 

def plot_multi_comparison(df, change_points):
    """ From the dataframe plot the current set of plots, where the bottom right is most indicative """
    fig, ax_arr = plt.subplots(3, 2, figsize=(12, 6), dpi=100, sharex=True)
    sns.scatterplot(data = df, x='time', y='SOURCE_S', ax=ax_arr[0,0])
    sns.lineplot(data = df, x='time', y='SOURCE_LIP_S', ax=ax_arr[0,1])
    sns.scatterplot(data = df, x='time', y='OFFSET', ax=ax_arr[1,0])
    sns.lineplot(data = df, x='time', y='OFFSET_LIP', ax=ax_arr[1,1])

    # Plot change point as lines 
    sns.lineplot(data = df, x='time', y='OFFSET_LIP', ax=ax_arr[2,1])
    for x in change_points:
        cp_time = x.start_time
        plt.vlines(x=cp_time, ymin=np.min(df['OFFSET_LIP']), ymax=np.max(df['OFFSET_LIP']), colors='red', lw=2)
        rand_y_pos = np.random.uniform(low=np.min(df['OFFSET_LIP']), high=np.max(df['OFFSET_LIP']), size=None)
        plt.text(x=cp_time, y=rand_y_pos, s=str(np.round(x.confidence, 2)), color='r', rotation=-0.0, fontsize=14)
    plt.xticks(rotation=90)
    return fig

def change_points_to_segments(df, change_points):
    """ Convert change points from kats detector to segment indicators """
    return [pd.to_datetime(0.0, unit='s').to_datetime64()] + [cp.start_time for cp in change_points] + [pd.to_datetime(df.iloc[-1]['TARGET_S'], unit='s').to_datetime64()]

def add_seconds_to_datetime64(datetime64, seconds, subtract=False):
    """Add or substract a number of seconds to a np.datetime64 object """
    s, m = divmod(seconds, 1.0)
    if subtract:
        return datetime64 - np.timedelta64(int(s), 's') - np.timedelta64(int(m * 1000), 'ms')
    return datetime64 + np.timedelta64(int(s), 's') + np.timedelta64(int(m * 1000), 'ms')

def plot_segment_comparison(df, change_points):
    """ From the dataframe plot the current set of plots, where the bottom right is most indicative """
    fig, ax_arr = plt.subplots(2, 1, figsize=(16, 6), dpi=100, sharex=True)
    sns.scatterplot(data = df, x='time', y='SOURCE_S', ax=ax_arr[0])
    # sns.lineplot(data = df, x='time', y='SOURCE_LIP_S', ax=ax_arr[0,1])

    # Plot change point as lines 
    # sns.lineplot(data = df, x='time', y='OFFSET_LIP', ax=ax_arr[1,0])
    sns.lineplot(data = df, x='time', y='OFFSET_LIP', ax=ax_arr[1])
    timestamps = change_points_to_segments(df, change_points) 

    # To plot the detected segment lines 
    for x in timestamps:
        plt.vlines(x=x, ymin=np.min(df['OFFSET_LIP']), ymax=np.max(df['OFFSET_LIP']), colors='black', lw=2, alpha=0.5)
        rand_y_pos = np.random.uniform(low=np.min(df['OFFSET_LIP']), high=np.max(df['OFFSET_LIP']), size=None)

    # To get each detected segment and their mean?
    threshold_diff = 1.5 # Average diff threshold 
    # threshold = 3.0 # s diff threshold
    for start_time, end_time in zip(timestamps[:-1], timestamps[1:]):

        add_offset = np.min(df['SOURCE_S'])
        
        # Cut out the segment between the segment lines 
        segment = df[(df['time'] > start_time) & (df['time'] < end_time)] # Not offset LIP
        segment_no_nan = segment[~np.isnan(segment['OFFSET'])] # Remove NaNs
        segment_offsets = segment_no_nan['OFFSET'] # np.round(segment_no_nan['OFFSET'], 1)
        # segment_offsets = np.round(segment_no_nan['OFFSET'], 0)
        
        # Calculate mean/median/mode
        # seg_sum_stat = np.mean(segment_offsets)
        # seg_sum_stat = np.median(segment_offsets)
        seg_sum_stat = st.mode(segment_offsets)[0][0]

        # Get average difference from mean/median/mode of the segment to see if it is a "straight line" or not 
        average_diff = np.mean(np.abs(segment_offsets - seg_sum_stat))
        
        # If the time where the segment comes from (origin time) is close to the start_time, it's a "good match", so no editing
        noisy = False if average_diff < threshold_diff else True
        origin_time = add_seconds_to_datetime64(start_time, seg_sum_stat + add_offset)

        # Plot green for a confident prediction (straight line), red otherwise
        if not noisy:
            # Plot estimated straight line
            plt.hlines(y=seg_sum_stat, xmin=start_time, xmax=end_time, color='green', lw=3, alpha=0.5)
            plt.text(x=start_time, y=seg_sum_stat, s=str(np.round(average_diff, 1)), color='green', rotation=-0.0, fontsize=14)   
        else:
            # Plot estimated straight line
            plt.hlines(y=seg_sum_stat, xmin=start_time, xmax=end_time, color='red', lw=3, alpha=0.5)
            plt.text(x=start_time, y=seg_sum_stat, s=str(np.round(average_diff, 1)), color='red', rotation=-0.0, fontsize=14)

        
        
        # print(f"DIFF={average_diff:.1f} SUMSTAT={seg_sum_stat:.1f} {start_time} -> {end_time} comes from video X, from {origin_time}")


    # Return figure
    plt.xticks(rotation=90)
    return fig