import time import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from config import FPS def plot_comparison(lims, D, I, hash_vectors, MIN_DISTANCE = 3): sns.set_theme() x = [(lims[i+1]-lims[i]) * [i] for i in range(hash_vectors.shape[0])] x = [i/FPS for j in x for i in j] y = [i/FPS for i in I] # Create figure and dataframe to plot with sns fig = plt.figure() # plt.tight_layout() df = pd.DataFrame(zip(x, y), columns = ['X', 'Y']) g = sns.scatterplot(data=df, x='X', y='Y', s=2*(1-D/(MIN_DISTANCE+1)), alpha=1-D/MIN_DISTANCE) # Set x-labels to be more readable x_locs, x_labels = plt.xticks() # Get original locations and labels for x ticks x_labels = [time.strftime('%H:%M:%S', time.gmtime(x)) for x in x_locs] plt.xticks(x_locs, x_labels) plt.xticks(rotation=90) plt.xlabel('Time in source video (H:M:S)') plt.xlim(0, None) # Set y-labels to be more readable y_locs, y_labels = plt.yticks() # Get original locations and labels for x ticks y_labels = [time.strftime('%H:%M:%S', time.gmtime(y)) for y in y_locs] plt.yticks(y_locs, y_labels) plt.ylabel('Time in target video (H:M:S)') # Adjust padding to fit gradio plt.subplots_adjust(bottom=0.25, left=0.20) return fig def plot_multi_comparison(df, change_points): """ From the dataframe plot the current set of plots, where the bottom right is most indicative """ fig, ax_arr = plt.subplots(3, 2, figsize=(12, 6), dpi=100, sharex=True) sns.scatterplot(data = df, x='time', y='SOURCE_S', ax=ax_arr[0,0]) sns.lineplot(data = df, x='time', y='SOURCE_LIP_S', ax=ax_arr[0,1]) sns.scatterplot(data = df, x='time', y='OFFSET', ax=ax_arr[1,0]) sns.lineplot(data = df, x='time', y='OFFSET_LIP', ax=ax_arr[1,1]) # Plot change point as lines sns.lineplot(data = df, x='time', y='OFFSET_LIP', ax=ax_arr[2,1]) for x in change_points: cp_time = x.start_time plt.vlines(x=cp_time, ymin=np.min(df['OFFSET_LIP']), ymax=np.max(df['OFFSET_LIP']), colors='red', lw=2) rand_y_pos = np.random.uniform(low=np.min(df['OFFSET_LIP']), high=np.max(df['OFFSET_LIP']), size=None) plt.text(x=cp_time, y=rand_y_pos, s=str(np.round(x.confidence, 2)), color='r', rotation=-0.0, fontsize=14) plt.xticks(rotation=90) return fig