OmniEval / src /leaderboard /read_evals.py
zstanjj's picture
add auto eval
b5a12e3
raw
history blame
9.57 kB
import glob
import json
import math
import os
from dataclasses import dataclass
import dateutil
import numpy as np
from src.display.formatting import make_clickable_model
from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType
from src.submission.check_validity import is_model_on_hub
@dataclass
class EvalResult:
"""Represents one full evaluation. Built from a combination of the result and request file for a given run.
"""
eval_name: str # org_model_precision (uid)
org: str
generative_model: str
retrieval_model: str
# revision: str # commit hash, "" if main
results: dict
generative_model_link: str = "" # link to the model on the hub
generative_model_args: dict = None
retrieval_model_link: str = "" # link to the model on the hub
retrieval_model_args: dict = None
precision: Precision = Precision.Unknown
model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
weight_type: WeightType = WeightType.Original # Original or Adapter
architecture: str = "Unknown"
license: str = "?"
likes: int = 0
date: str = "" # submission date of request file
still_on_hub: bool = False
@classmethod
def init_from_json_file(self, json_filepath):
"""Inits the result from the specific model result file"""
with open(json_filepath) as fp:
data = json.load(fp)
config = data.get("config")
# Precision
# precision = Precision.from_str(config.get("model_dtype"))
# Get model and org
eval_name= config.get("eval_name", "")
generative_model = config.get("generative_model", "")
retrieval_model = config.get("retrieval_model", "")
org= config.get("org", "")
# org_and_model = org_and_model.split("/", 1)
#
# if len(org_and_model) == 1:
# org = None
# model = org_and_model[0]
# result_key = f"{model}_{precision.value.name}"
# else:
# org = org_and_model[0]
# model = org_and_model[1]
# result_key = f"{org}_{model}_{precision.value.name}"
# full_model = "/".join(org_and_model)
# still_on_hub, _, model_config = is_model_on_hub(
# full_model, config.get("model_sha", "main"), trust_remote_code=True, test_tokenizer=False
# )
# if model_config is not None:
# architectures = getattr(model_config, "architectures", None)
# if architectures:
# architecture = ";".join(architectures)
# Extract results available in this file (some results are split in several files)
results = {}
for task in Tasks:
task = task.value
# We average all scores of a given metric (not all metrics are present in all files)
accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark == k and task.col_name != "hallucination"])
if accs.size == 0 or any([acc is None for acc in accs]):
continue
mean_acc = np.mean(accs) * 100.0
results[task.benchmark] = mean_acc
results[task.metric] = data["results"][task.benchmark].get(task.metric, None)
if results[task.metric] is not None:
results[task.metric] = results[task.metric] * 100.0
generative_model_args = config.get("generative_model_args", None)
retrieval_model_args = config.get("retrieval_model_args", None)
open_source= True
if not generative_model_args or not generative_model_args.get("open_source", False):
open_source = False
if not retrieval_model_args or not retrieval_model_args.get("open_source", False):
open_source = False
return self(
eval_name=eval_name,
# full_model=full_model,
org=org,
generative_model=generative_model,
retrieval_model=retrieval_model,
results=results,
generative_model_args=generative_model_args,
retrieval_model_args=retrieval_model_args,
model_type=ModelType.OpenSource if open_source else ModelType.ClosedSource,
# precision=precision,
# revision= config.get("model_sha", ""),
# still_on_hub=still_on_hub,
# architecture=architecture
)
def update_with_request_file(self, requests_path):
"""Finds the relevant request file for the current model and updates info with it"""
request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name)
try:
with open(request_file, "r") as f:
request = json.load(f)
self.model_type = ModelType.from_str(request.get("model_type", ""))
self.weight_type = WeightType[request.get("weight_type", "Original")]
self.license = request.get("license", "?")
self.likes = request.get("likes", 0)
self.num_params = request.get("params", 0)
self.date = request.get("submitted_time", "")
except Exception:
print(f"Could not find request file for {self.org}/{self.model} with precision {self.precision.value.name}")
def to_dict(self):
"""Converts the Eval Result to a dict compatible with our dataframe display"""
data_dict = {
"eval_name": self.eval_name, # not a column, just a save name,
# AutoEvalColumn.precision.name: self.precision.value.name,
AutoEvalColumn.model_type.name: self.model_type.value.name,
AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
# AutoEvalColumn.weight_type.name: self.weight_type.value.name,
# AutoEvalColumn.architecture.name: self.architecture,
AutoEvalColumn.generative_model.name: self.generative_model,
AutoEvalColumn.retrieval_model.name: self.retrieval_model,
AutoEvalColumn.generative_model_link.name: make_clickable_model(self.generative_model, self.generative_model_link),
AutoEvalColumn.retrieval_model_link.name: make_clickable_model(self.retrieval_model, self.retrieval_model_link),
# AutoEvalColumn.revision.name: self.revision,
AutoEvalColumn.ret_average.name: self.results["retrieval"],
AutoEvalColumn.gen_average.name: self.results["generation"],
# AutoEvalColumn.license.name: self.license,
# AutoEvalColumn.likes.name: self.likes,
# AutoEvalColumn.generative_model_params.name: self.num_params,
# AutoEvalColumn.still_on_hub.name: self.still_on_hub,
"Gen#Params (B)": self.generative_model_args.get("num_params", "Unknown"),
"Ret#Params (B)": self.retrieval_model_args.get("num_params", "Unknown"),
}
for task in Tasks:
data_dict[task.value.col_name] = self.results[task.value.metric]
return data_dict
def get_request_file_for_model(requests_path, model_name, precision):
"""Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
request_files = os.path.join(
requests_path,
f"{model_name}_eval_request_*.json",
)
request_files = glob.glob(request_files)
# Select correct request file (precision)
request_file = ""
request_files = sorted(request_files, reverse=True)
for tmp_request_file in request_files:
with open(tmp_request_file, "r") as f:
req_content = json.load(f)
if (
req_content["status"] in ["FINISHED"]
and req_content["precision"] == precision.split(".")[-1]
):
request_file = tmp_request_file
return request_file
def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResult]:
"""From the path of the results folder root, extract all needed info for results"""
model_result_filepaths = []
print(f"Reading results from {results_path}")
for root, _, files in os.walk(results_path):
# We should only have json files in model results
if len(files) == 0 or any([not f.endswith(".json") for f in files]):
continue
# Sort the files by date
try:
files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7])
except dateutil.parser._parser.ParserError:
files = [files[-1]]
for file in files:
model_result_filepaths.append(os.path.join(root, file))
print(f"Adding {file}")
eval_results = {}
for model_result_filepath in model_result_filepaths:
# Creation of result
eval_result = EvalResult.init_from_json_file(model_result_filepath)
# eval_result.update_with_request_file(requests_path)
# Store results of same eval together
eval_name = eval_result.eval_name
if eval_name in eval_results.keys():
eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
else:
eval_results[eval_name] = eval_result
results = []
for v in eval_results.values():
try:
v.to_dict() # we test if the dict version is complete
results.append(v)
except KeyError: # not all eval values present
import traceback
traceback.print_exc()
continue
return results