File size: 9,220 Bytes
6e5173a
 
3530d5c
 
6e5173a
3530d5c
 
 
 
 
6e5173a
 
 
3530d5c
 
 
 
 
 
 
 
 
 
 
 
 
6e5173a
3530d5c
 
 
b4a5b14
 
 
 
 
 
3530d5c
 
 
 
 
 
 
 
 
 
 
 
b4a5b14
3530d5c
b4a5b14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3530d5c
 
 
 
b4a5b14
3530d5c
6e5173a
b4a5b14
3530d5c
b4a5b14
3530d5c
b4a5b14
 
 
3530d5c
b4a5b14
3530d5c
 
 
b4a5b14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3530d5c
b4a5b14
3530d5c
 
6e5173a
b4a5b14
 
 
3530d5c
b4a5b14
 
 
 
 
 
 
 
 
 
 
 
 
 
6e5173a
b4a5b14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3530d5c
 
 
 
b4a5b14
0e7e532
b4a5b14
 
 
 
 
 
 
 
 
 
 
 
 
3530d5c
 
 
 
 
b4a5b14
 
3530d5c
 
 
 
 
 
 
 
 
 
 
 
 
 
b4a5b14
 
3530d5c
 
b4a5b14
3530d5c
 
 
05fa709
3530d5c
 
 
6e5173a
 
 
0e7e532
6e5173a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3530d5c
6e5173a
 
8da4144
731fa08
3530d5c
 
 
 
 
 
 
 
 
 
 
 
6e5173a
3530d5c
b4a5b14
3530d5c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
# flake8: noqa: E402
import re
import sys, os
import logging
import re_matching
logging.getLogger("numba").setLevel(logging.WARNING)
logging.getLogger("markdown_it").setLevel(logging.WARNING)
logging.getLogger("urllib3").setLevel(logging.WARNING)
logging.getLogger("matplotlib").setLevel(logging.WARNING)

logging.basicConfig(
    level=logging.INFO, format="| %(name)s | %(levelname)s | %(message)s"
)

logger = logging.getLogger(__name__)

import torch
import argparse
import commons
import utils
from models import SynthesizerTrn
from text.symbols import symbols
from text import cleaned_text_to_sequence, get_bert
from text.cleaner import clean_text
import gradio as gr
import webbrowser
import numpy as np

net_g = None

if sys.platform == "darwin" and torch.backends.mps.is_available():
    device = "mps"
    os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
else:
    device = "cuda"


def get_text(text, language_str, hps):
    norm_text, phone, tone, word2ph = clean_text(text, language_str)
    phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)

    if hps.data.add_blank:
        phone = commons.intersperse(phone, 0)
        tone = commons.intersperse(tone, 0)
        language = commons.intersperse(language, 0)
        for i in range(len(word2ph)):
            word2ph[i] = word2ph[i] * 2
        word2ph[0] += 1
    bert = get_bert(norm_text, word2ph, language_str, device)
    del word2ph
    assert bert.shape[-1] == len(phone), phone

    if language_str == "ZH":
        bert = bert
        ja_bert = torch.zeros(768, len(phone))
    elif language_str == "JP":
        ja_bert = bert
        bert = torch.zeros(1024, len(phone))
    else:
        bert = torch.zeros(1024, len(phone))
        ja_bert = torch.zeros(768, len(phone))

    assert bert.shape[-1] == len(
        phone
    ), f"Bert seq len {bert.shape[-1]} != {len(phone)}"

    phone = torch.LongTensor(phone)
    tone = torch.LongTensor(tone)
    language = torch.LongTensor(language)
    return bert, ja_bert, phone, tone, language


def infer(text, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid, language):
    global net_g
    bert, ja_bert, phones, tones, lang_ids = get_text(text, language, hps)
    with torch.no_grad():
        x_tst = phones.to(device).unsqueeze(0)
        tones = tones.to(device).unsqueeze(0)
        lang_ids = lang_ids.to(device).unsqueeze(0)
        bert = bert.to(device).unsqueeze(0)
        ja_bert = ja_bert.to(device).unsqueeze(0)
        x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
        del phones
        speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device)
        audio = (
            net_g.infer(
                x_tst,
                x_tst_lengths,
                speakers,
                tones,
                lang_ids,
                bert,
                ja_bert,
                sdp_ratio=sdp_ratio,
                noise_scale=noise_scale,
                noise_scale_w=noise_scale_w,
                length_scale=length_scale,
            )[0][0, 0]
            .data.cpu()
            .float()
            .numpy()
        )
        del x_tst, tones, lang_ids, bert, x_tst_lengths, speakers
        torch.cuda.empty_cache()
        return audio


def generate_audio(slices, sdp_ratio, noise_scale, noise_scale_w, length_scale, speaker, language):
    audio_list = []
    silence = np.zeros(hps.data.sampling_rate // 2)
    with torch.no_grad():
        for piece in slices:
            audio = infer(
                piece,
                sdp_ratio=sdp_ratio,
                noise_scale=noise_scale,
                noise_scale_w=noise_scale_w,
                length_scale=length_scale,
                sid=speaker,
                language=language,
            )
            audio_list.append(audio)
            audio_list.append(silence)  # 将静音添加到列表中
    return audio_list


def tts_fn(text: str, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale, language):
    audio_list = []
    if language == "mix":
        bool_valid, str_valid = re_matching.validate_text(text)
        if not bool_valid:
            return str_valid, (hps.data.sampling_rate, np.concatenate([np.zeros(hps.data.sampling_rate // 2)]))
        result = re_matching.text_matching(text)
        for one in result:
            _speaker = one.pop()
            for lang, content in one:
                audio_list.extend(
                    generate_audio(content.split("|"), sdp_ratio, noise_scale,
                                   noise_scale_w, length_scale, _speaker+'_'+lang.lower(), lang)
                )
    else:
        audio_list.extend(
            generate_audio(text.split("|"), sdp_ratio, noise_scale, noise_scale_w, length_scale, speaker, language)
        )

    audio_concat = np.concatenate(audio_list)
    return "Success", (hps.data.sampling_rate, audio_concat)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "-m", "--model", default="./logs/maolei/G_4800.pth", help="path of your model"
    )
    parser.add_argument(
        "-c",
        "--config",
        default="./configs/config.json",
        help="path of your config file",
    )
    parser.add_argument(
        "--share", default=False, help="make link public", action="store_true"
    )
    parser.add_argument(
        "-d", "--debug", action="store_true", help="enable DEBUG-LEVEL log"
    )

    args = parser.parse_args()
    if args.debug:
        logger.info("Enable DEBUG-LEVEL log")
        logging.basicConfig(level=logging.DEBUG)
    hps = utils.get_hparams_from_file(args.config)

    device = (
        "cuda:0"
        if torch.cuda.is_available()
        else (
            "mps"
            if sys.platform == "darwin" and torch.backends.mps.is_available()
            else "cpu"
        )
    )
    net_g = SynthesizerTrn(
        len(symbols),
        hps.data.filter_length // 2 + 1,
        hps.train.segment_size // hps.data.hop_length,
        n_speakers=hps.data.n_speakers,
        **hps.model,
    ).to(device)
    _ = net_g.eval()

    _ = utils.load_checkpoint(args.model, net_g, None, skip_optimizer=True)

    speaker_ids = hps.data.spk2id
    speakers = list(speaker_ids.keys())
    languages = ["ZH", "JP", "mix"]
    with gr.Blocks() as app:
        with gr.Row():
            with gr.Column():
                gr.Markdown(value="""
                bert-vits-v1.1.1整合包作者:@spicysama\n
                整合包b站链接:https://www.bilibili.com/video/BV1hu4y1W7dW\n
                模型作者:RUSHB-喵咪\n
                声音归属:@猫雷NyaRu_Official\n
                Bert-VITS2项目:https://github.com/Stardust-minus/Bert-VITS2\n
                猫雷的B站账号:https://space.bilibili.com/697091119
                发布二创作品请标注本项目作者及链接、作品使用Bert-VITS2 AI生成!\n                
                """)
                text = gr.TextArea(
                    label="输入文本内容",
                    placeholder="""
                    如果你选择语言为\'mix\',必须按照格式输入,否则报错:
                        格式举例(zh是中文,jp是日语,不区分大小写;说话人举例:gongzi):
                         [说话人1]<zh>你好,こんにちは! <jp>こんにちは,世界。
                         [说话人2]<zh>你好吗?<jp>元気ですか?
                         [说话人3]<zh>谢谢。<jp>どういたしまして。
                         ...
                    另外,所有的语言选项都可以用'|'分割长段实现分句生成。
                    """
                )
                speaker = gr.Dropdown(
                    choices=speakers, value=speakers[0], label="选择说话人"
                )
                sdp_ratio = gr.Slider(
                    minimum=0, maximum=1, value=0.2, step=0.1, label="SDP/DP混合比"
                )
                noise_scale = gr.Slider(
                    minimum=0.1, maximum=2, value=0.2, step=0.1, label="感情"
                )
                noise_scale_w = gr.Slider(
                    minimum=0.1, maximum=2, value=0.9, step=0.1, label="音素长度"
                )
                length_scale = gr.Slider(
                    minimum=0.1, maximum=2, value=0.8, step=0.1, label="语速"
                )
                language = gr.Dropdown(
                    choices=languages, value=languages[0], label="选择语言(该模型mix混合效果不好,先别用)"
                )
                btn = gr.Button("生成音频!", variant="primary")
            with gr.Column():
                text_output = gr.Textbox(label="状态信息")
                audio_output = gr.Audio(label="输出音频")
                
        btn.click(
            tts_fn,
            inputs=[
                text,
                speaker,
                sdp_ratio,
                noise_scale,
                noise_scale_w,
                length_scale,
                language,
            ],
            outputs=[text_output, audio_output],
        )

    

        
    app.launch(show_error=True)