import gradio as gr import os import torch import torchaudio from transformers import ( WhisperProcessor, WhisperForConditionalGeneration, SpeechT5Processor, SpeechT5ForTextToSpeech, MarianMTModel, MarianTokenizer ) import ffmpeg import soundfile as sf # Configurações UPLOAD_FOLDER = "uploads" OUTPUT_FOLDER = "outputs" if not os.path.exists(UPLOAD_FOLDER): os.makedirs(UPLOAD_FOLDER) if not os.path.exists(OUTPUT_FOLDER): os.makedirs(OUTPUT_FOLDER) # Verificar se a GPU está disponível device = "cuda" if torch.cuda.is_available() else "cpu" print(f"Usando dispositivo: {device}") # Inicializar modelos whisper_processor = WhisperProcessor.from_pretrained("openai/whisper-small") whisper_model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small").to(device) tts_processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts") tts_model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device) translation_model_name = "Helsinki-NLP/opus-mt-en-pt" translation_tokenizer = MarianTokenizer.from_pretrained(translation_model_name) translation_model = MarianMTModel.from_pretrained(translation_model_name).to(device) # Funções auxiliares def transcribe_audio(audio_path): waveform, sample_rate = torchaudio.load(audio_path) waveform = waveform.to(device) inputs = whisper_processor(waveform.squeeze().cpu().numpy(), sampling_rate=sample_rate, return_tensors="pt").to(device) with torch.no_grad(): predicted_ids = whisper_model.generate(inputs.input_features) transcription = whisper_processor.batch_decode(predicted_ids, skip_special_tokens=True) return transcription[0] def synthesize_speech(text, output_path): inputs = tts_processor(text, return_tensors="pt").to(device) with torch.no_grad(): speech = tts_model.generate_speech(inputs["input_ids"], tts_model.speaker_embeddings) sf.write(output_path, speech.cpu().numpy(), samplerate=22050) def translate_text(text, target_language="pt"): inputs = translation_tokenizer(text, return_tensors="pt", truncation=True).to(device) with torch.no_grad(): translated_ids = translation_model.generate(**inputs) translated_text = translation_tokenizer.decode(translated_ids[0], skip_special_tokens=True) return translated_text def extract_audio(video_path, audio_path): ffmpeg.input(video_path).output(audio_path, ac=1, ar="16000").run(overwrite_output=True) def replace_audio_in_video(video_path, audio_path, output_path): video = ffmpeg.input(video_path) audio = ffmpeg.input(audio_path) ffmpeg.output(video.video, audio.audio, output_path, vcodec="copy", acodec="aac").run(overwrite_output=True) # Função principal para Gradio def translate_video(video): video_path = os.path.join(UPLOAD_FOLDER, "input_video.mp4") with open(video_path, "wb") as f: f.write(video) try: # Extrair áudio do vídeo audio_path = os.path.join(UPLOAD_FOLDER, "audio.wav") extract_audio(video_path, audio_path) # Transcrever áudio transcribed_text = transcribe_audio(audio_path) print("Texto transcrito:", transcribed_text) # Traduzir texto translated_text = translate_text(transcribed_text, target_language="pt") print("Texto traduzido:", translated_text) # Sintetizar áudio em português synthesized_audio_path = os.path.join(UPLOAD_FOLDER, "synthesized_audio.wav") synthesize_speech(translated_text, synthesized_audio_path) # Substituir áudio no vídeo output_video_path = os.path.join(OUTPUT_FOLDER, "translated_video.mp4") replace_audio_in_video(video_path, synthesized_audio_path, output_video_path) return output_video_path except Exception as e: return f"Erro: {str(e)}" # Interface Gradio iface = gr.Interface( fn=translate_video, inputs=gr.Video(), outputs=gr.Video(), title="Tradutor de Vídeo", description="Carregue um vídeo em qualquer idioma e ele será traduzido para português." ) iface.launch()