import os import json import torch from PIL import Image from torchvision import transforms import matplotlib.pyplot as plt import gradio as gr from io import BytesIO from vit_model import vit_base_patch16_224_in21k as create_model def classify_image(img): # Your existing code here, modified to use `img_path` as input device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") data_transform = transforms.Compose( [transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]) # [N, C, H, W] img = data_transform(img) # expand batch dimension img = torch.unsqueeze(img, dim=0) # read class_indict json_path = './class_indices.json' assert os.path.exists(json_path), "file: '{}' dose not exist.".format(json_path) with open(json_path, "r") as f: class_indict = json.load(f) # create model model = create_model(num_classes=370, has_logits=False).to(device) # load model weights model_weight_path = "./best_model.pth" model.load_state_dict(torch.load(model_weight_path, map_location=device)) model.eval() with torch.no_grad(): # predict class output = torch.squeeze(model(img.to(device))).cpu() predict = torch.softmax(output, dim=0) predict_cla = torch.argmax(predict).numpy() print_res = "class: {} prob: {:.3}".format(class_indict[str(predict_cla)], predict[predict_cla].numpy()) # Combine the two lists into a list of tuples combined_list = list(zip(class_indict, predict)) # Sort the combined list by the 'predict' values in descending order sorted_combined_list = sorted(combined_list, key=lambda x: x[1], reverse=True) # Determine the position you are currently interested in current_position = 5 # Example position # Get the previous five elements from the sorted list # Ensure that the index does not go below zero start_index = max(current_position - 5, 0) previous_five = sorted_combined_list[start_index:current_position] joined_string = "" for i in previous_five: #print("class: {:10} prob: {:.3}".format(class_indict[str(i[0])], i[1].numpy())) joined_string += ("class: {:10} prob: {:.3}".format(class_indict[str(i[0])], i[1].numpy())) + "\n" #print(joined_string) plt.title(joined_string) plt.tight_layout() fig = plt.figure() return joined_string # Create a Gradio interface iface = gr.Interface( fn=classify_image, theme=gr.themes.Default(text_size="lg"), inputs=gr.Image(type='pil'), outputs=gr.Textbox(), title="Mushroom Image Classification", description="Upload a mushroom image to classify." ) # Run the Gradio app #if __name__ == '__main__': iface.launch()