File size: 1,195 Bytes
93396ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import gradio as gr
from transformers import AutoTokenizer, FastLanguageModel

# Load the model and tokenizer
model, tokenizer = FastLanguageModel.from_pretrained(
    model_name="lora_model",  # Replace with your trained model name
    max_seq_length=512,
    dtype="float16",
    load_in_4bit=True,
)
FastLanguageModel.for_inference(model)

# Define the inference function
def generate_response(user_input):
    # Prepare the input for the model
    labeled_prompt = (
        "Please provide the response with the following labels:\n"
        f"User Input: {user_input}\n"
        "Response:"
    )

    inputs = tokenizer(
        [labeled_prompt],
        return_tensors="pt",
        padding=True,
        truncation=True,
        max_length=512,
    ).to("cuda")

    response = model.generate(input_ids=inputs.input_ids, attention_mask=inputs.attention_mask, max_new_tokens=100, pad_token_id=tokenizer.eos_token_id)
    return tokenizer.decode(response[0], skip_special_tokens=True)

# Create a Gradio interface
iface = gr.Interface(fn=generate_response, inputs="text", outputs="text", title="Chatbot Interface", description="Enter your message below:")

# Launch the app
iface.launch()