Update app.py
Browse files
app.py
CHANGED
@@ -1,57 +1,56 @@
|
|
1 |
-
|
2 |
from unsloth import FastLanguageModel
|
3 |
-
import
|
4 |
|
5 |
# Load the model and tokenizer
|
6 |
-
model_name = "Rafay17/Llama3.
|
7 |
-
tokenizer =
|
8 |
-
|
9 |
-
model = FastLanguageModel.from_pretrained(
|
10 |
-
model_name=model_name,
|
11 |
-
max_seq_length=512, # Adjust as needed
|
12 |
-
dtype="float16", # Adjust as needed
|
13 |
-
load_in_4bit=True # Adjust based on your needs
|
14 |
-
)
|
15 |
-
|
16 |
-
FastLanguageModel.for_inference(model) # Call this immediately after loading the model
|
17 |
|
18 |
# Function to generate a response
|
19 |
-
def generate_response(
|
20 |
-
# Prepare the labeled prompt for
|
21 |
-
labeled_prompt = f"User Input: {
|
22 |
|
23 |
-
#
|
24 |
inputs = tokenizer(
|
25 |
[labeled_prompt],
|
26 |
return_tensors="pt",
|
27 |
padding=True,
|
28 |
truncation=True,
|
29 |
-
max_length=512,
|
30 |
).to("cuda")
|
31 |
|
32 |
-
#
|
33 |
text_streamer = TextStreamer(tokenizer, skip_prompt=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
-
|
36 |
-
|
37 |
-
model.generate(
|
38 |
-
input_ids=inputs.input_ids,
|
39 |
-
attention_mask=inputs.attention_mask,
|
40 |
-
streamer=text_streamer,
|
41 |
-
max_new_tokens=100, # Adjust this value as needed
|
42 |
-
pad_token_id=tokenizer.eos_token_id,
|
43 |
-
)
|
44 |
-
|
45 |
-
# Function to take user input and generate output
|
46 |
-
def user_interaction():
|
47 |
-
print("Welcome to the Chatbot! Type 'exit' to quit.")
|
48 |
-
while True:
|
49 |
-
user_input = input("You: ")
|
50 |
-
if user_input.lower() == 'exit':
|
51 |
-
print("Exiting the chatbot. Goodbye!")
|
52 |
-
break
|
53 |
-
print("Chatbot is generating a response...")
|
54 |
-
generate_response(user_input)
|
55 |
-
|
56 |
-
# Start the user interaction
|
57 |
-
user_interaction()
|
|
|
1 |
+
import gradio as gr
|
2 |
from unsloth import FastLanguageModel
|
3 |
+
from transformers import AutoTokenizer, TextStreamer
|
4 |
|
5 |
# Load the model and tokenizer
|
6 |
+
model_name = "Rafay17/Llama3.2_1b_customModel2" # Your custom model
|
7 |
+
model, tokenizer = FastLanguageModel.from_pretrained(model_name)
|
8 |
+
FastLanguageModel.for_inference(model) # Enable the model for inference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
# Function to generate a response
|
11 |
+
def generate_response(message, history, max_tokens, temperature, top_p):
|
12 |
+
# Prepare the labeled prompt for response generation
|
13 |
+
labeled_prompt = f"User Input: {message}\nResponse:"
|
14 |
|
15 |
+
# Tokenize the input
|
16 |
inputs = tokenizer(
|
17 |
[labeled_prompt],
|
18 |
return_tensors="pt",
|
19 |
padding=True,
|
20 |
truncation=True,
|
21 |
+
max_length=512,
|
22 |
).to("cuda")
|
23 |
|
24 |
+
# Generate the response
|
25 |
text_streamer = TextStreamer(tokenizer, skip_prompt=True)
|
26 |
+
response = ""
|
27 |
+
for token in model.generate(
|
28 |
+
input_ids=inputs.input_ids,
|
29 |
+
attention_mask=inputs.attention_mask,
|
30 |
+
streamer=text_streamer,
|
31 |
+
max_new_tokens=max_tokens,
|
32 |
+
temperature=temperature,
|
33 |
+
top_p=top_p,
|
34 |
+
pad_token_id=tokenizer.eos_token_id,
|
35 |
+
):
|
36 |
+
response += token
|
37 |
+
|
38 |
+
return response
|
39 |
+
|
40 |
+
|
41 |
+
# Define the Gradio interface
|
42 |
+
demo = gr.Interface(
|
43 |
+
fn=generate_response,
|
44 |
+
inputs=[
|
45 |
+
gr.Textbox(lines=2, placeholder="Enter your message here..."),
|
46 |
+
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
47 |
+
gr.Slider(minimum=1, maximum=512, value=64, label="Max new tokens"),
|
48 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.7, label="Temperature"),
|
49 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.9, label="Top-p (nucleus sampling)"),
|
50 |
+
],
|
51 |
+
outputs=gr.Textbox(label="Chatbot Response"),
|
52 |
+
live=True
|
53 |
+
)
|
54 |
|
55 |
+
if __name__ == "__main__":
|
56 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|