Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import cv2
|
3 |
+
import tempfile
|
4 |
+
from modelscope.outputs import OutputKeys
|
5 |
+
from modelscope.pipelines import pipeline
|
6 |
+
from modelscope.utils.constant import Tasks
|
7 |
+
import PIL
|
8 |
+
from pathlib import Path
|
9 |
+
import gradio as gr
|
10 |
+
import numpy as np
|
11 |
+
import requests
|
12 |
+
from io import BytesIO
|
13 |
+
from PIL import Image
|
14 |
+
|
15 |
+
# Load the model into memory to make running multiple predictions efficien
|
16 |
+
img_colorization = pipeline(Tasks.image_colorization, model='iic/cv_ddcolor_image-colorization')
|
17 |
+
|
18 |
+
|
19 |
+
def load_image_from_url(url):
|
20 |
+
response = requests.get(url)
|
21 |
+
img = Image.open(BytesIO(response.content))
|
22 |
+
return img
|
23 |
+
|
24 |
+
def inference(img, img_url=None):
|
25 |
+
if img_url:
|
26 |
+
img = load_image_from_url(img_url)
|
27 |
+
img = np.array(img)
|
28 |
+
output = img_colorization(img[..., ::-1])
|
29 |
+
result = output[OutputKeys.OUTPUT_IMG].astype(np.uint8)
|
30 |
+
temp_dir = tempfile.mkdtemp()
|
31 |
+
out_path = os.path.join(temp_dir, 'old-to-color.png')
|
32 |
+
cv2.imwrite(out_path, result)
|
33 |
+
upload_url = "https://api.postimages.org/upload"
|
34 |
+
files = {'file': open(out_path, 'rb')}
|
35 |
+
response = requests.post(upload_url, files=files)
|
36 |
+
files.close()
|
37 |
+
image_url = response.json()['url'] # رابط الصورة المحملة
|
38 |
+
|
39 |
+
return Path(out_path), image_url
|
40 |
+
|
41 |
+
title = "Color Restorization Model"
|
42 |
+
interface = gr.Interface(
|
43 |
+
inference,
|
44 |
+
inputs=[
|
45 |
+
gr.inputs.Image(type="pil", label="Input Image"),
|
46 |
+
gr.inputs.Textbox(placeholder="Enter Image URL (optional)", label="Image URL (optional)")
|
47 |
+
],
|
48 |
+
outputs=[
|
49 |
+
gr.outputs.Image(type="pil", label="Output Image"),
|
50 |
+
gr.outputs.Textbox(label="Download Link")
|
51 |
+
],
|
52 |
+
title=title
|
53 |
+
)
|
54 |
+
|
55 |
+
interface.launch(enable_queue=True)
|