Rafuwhwhs commited on
Commit
c3daa39
·
verified ·
1 Parent(s): d939d43

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +80 -60
app.py CHANGED
@@ -1,64 +1,84 @@
 
 
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59
  ],
 
 
60
  )
61
 
62
-
63
- if __name__ == "__main__":
64
- demo.launch()
 
1
+
2
+ from typing import List, Tuple, Dict, Generator
3
+ from langchain.llms import OpenAI
4
  import gradio as gr
5
+
6
+ model_name = "gpt-4o"
7
+ LLM = OpenAI(model_name=model_name, temperature=0.1)
8
+
9
+ def create_history_messages(history: List[Tuple[str, str]]) -> List[dict]:
10
+ history_messages = [{"role": "user", "content": m[0]} for m in history]
11
+ history_messages.extend([{"role": "assistant", "content": m[1]} for m in history])
12
+ return history_messages
13
+
14
+ def create_formatted_history(history_messages: List[dict]) -> List[Tuple[str, str]]:
15
+ formatted_history = []
16
+ user_messages = []
17
+ assistant_messages = []
18
+
19
+ for message in history_messages:
20
+ if message["role"] == "user":
21
+ user_messages.append(message["content"])
22
+ elif message["role"] == "assistant":
23
+ assistant_messages.append(message["content"])
24
+
25
+ if user_messages and assistant_messages:
26
+ formatted_history.append(
27
+ ("".join(user_messages), "".join(assistant_messages))
28
+ )
29
+ user_messages = []
30
+ assistant_messages = []
31
+
32
+ # append any remaining messages
33
+ if user_messages:
34
+ formatted_history.append(("".join(user_messages), None))
35
+ elif assistant_messages:
36
+ formatted_history.append((None, "".join(assistant_messages)))
37
+
38
+ return formatted_history
39
+
40
+ def chat(
41
+ message: str, state: List[Dict[str, str]], client = LLM.client
42
+ ) -> Generator[Tuple[List[Tuple[str, str]], List[Dict[str, str]]], None, None]:
43
+ history_messages = state
44
+ if history_messages == None:
45
+ history_messages = []
46
+ history_messages.append({"role": "system", "content": "A helpful assistant."})
47
+
48
+ history_messages.append({"role": "user", "content": message})
49
+ # We have no content for the assistant's response yet but we will update this:
50
+ history_messages.append({"role": "assistant", "content": ""})
51
+
52
+ response_message = ""
53
+
54
+ chat_generator = client.create(
55
+ messages=history_messages, stream=True, model=model_name
56
+ )
57
+
58
+ for chunk in chat_generator:
59
+ if "choices" in chunk:
60
+ for choice in chunk["choices"]:
61
+ if "delta" in choice and "content" in choice["delta"]:
62
+ new_token = choice["delta"]["content"]
63
+ # Add the latest token:
64
+ response_message += new_token
65
+ # Update the assistant's response in our model:
66
+ history_messages[-1]["content"] = response_message
67
+
68
+ if "finish_reason" in choice and choice["finish_reason"] == "stop":
69
+ break
70
+ formatted_history = create_formatted_history(history_messages)
71
+ yield formatted_history, history_messages
72
+
73
+ chatbot = gr.Chatbot(label="Chat").style(color_map=("yellow", "purple"))
74
+ iface = gr.Interface(
75
+ fn=chat,
76
+ inputs=[
77
+ gr.Textbox(placeholder="Hello! How are you? etc.", label="Message"),
78
+ "state",
79
  ],
80
+ outputs=[chatbot, "state"],
81
+ allow_flagging="never",
82
  )
83
 
84
+ iface.queue().launch()