Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import pipeline | |
# Load the Hugging Face model for text generation | |
pipe = pipeline("text-generation", model="google/gemma-2-27b-it") | |
# Function to generate MCQs | |
def generate_mcqs(content, num_questions): | |
messages = [{"role": "user", "content": content}] | |
questions = pipe(messages, max_length=512, num_return_sequences=num_questions, num_beams=num_questions) | |
return questions | |
# Streamlit UI | |
st.title("MCQ Generator using Hugging Face") | |
content = st.text_area("Enter the content from which MCQs will be generated:", height=200) | |
num_questions = st.number_input("Enter the number of MCQs to generate:", min_value=1, max_value=20, value=5, step=1) | |
if st.button("Generate MCQs"): | |
if content: | |
mcqs = generate_mcqs(content, num_questions) | |
for i, mcq in enumerate(mcqs): | |
st.write(f"Q{i+1}: {mcq['generated_text']}") | |
else: | |
st.warning("Please enter the content to generate MCQs.") | |