Raghvender's picture
Update app.py
59e0448
import gradio as gr
import cv2
from ultralytics import YOLO
model = YOLO('best.pt')
# video_path = 'Deployment\\test_videos\\test2.mp4'
def show_preds(video_path):
cap = cv2.VideoCapture(video_path)
while True:
ret, frame = cap.read()
if ret:
frame_copy = frame.copy()
outputs = model.predict(source=frame)
res = outputs[0].cpu().numpy()
for i, det in enumerate(res.boxes.xyxy):
cv2.rectangle(
frame_copy,
(int(det[0]), int(det[1])),
(int(det[2]), int(det[3])),
color=(0, 0, 255),
thickness=2,
lineType=cv2.LINE_AA
)
yield cv2.cvtColor(frame_copy, cv2.COLOR_BGR2RGB)
input_video = [
gr.components.Video(type='filepath', label='Input Video'),
]
outputs_video = [
gr.components.Image(type='numpy', label='Output Image'),
]
interface_video = gr.Interface(
fn=show_preds,
inputs=input_video, # type: ignore
outputs=outputs_video, # type: ignore
title='Pothole Detection',
#examples=video_path,
cache_examples=False,
)
gr.TabbedInterface(
[interface_video],
tab_names=['Video Inference']
).queue().launch()