Update app.py
Browse files
app.py
CHANGED
@@ -1,12 +1,10 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
from tensorflow.keras.preprocessing.image import img_to_array, ImageDataGenerator
|
3 |
from PIL import Image
|
4 |
-
import numpy as np
|
5 |
-
import os
|
6 |
-
import zipfile
|
7 |
-
import tempfile
|
8 |
|
9 |
-
def augment_images(
|
|
|
10 |
datagen = ImageDataGenerator(
|
11 |
rotation_range=40,
|
12 |
width_shift_range=0.2,
|
@@ -14,35 +12,30 @@ def augment_images(image_file, num_duplicates):
|
|
14 |
shear_range=0.2,
|
15 |
zoom_range=0.2,
|
16 |
horizontal_flip=True,
|
17 |
-
fill_mode='nearest'
|
|
|
18 |
|
19 |
-
|
|
|
20 |
img = img.resize((256, 256)) # Resize image
|
21 |
-
x = img_to_array(img)
|
22 |
-
x = x.reshape((1,) + x.shape)
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
# Zip the augmented images
|
32 |
-
zip_name = tempfile.mktemp(suffix='.zip')
|
33 |
-
with zipfile.ZipFile(zip_name, 'w', zipfile.ZIP_DEFLATED) as zipf:
|
34 |
-
for root, _, files in os.walk(temp_dir):
|
35 |
-
for file in files:
|
36 |
-
zipf.write(os.path.join(root, file), arcname=file)
|
37 |
|
38 |
-
return
|
39 |
|
40 |
iface = gr.Interface(
|
41 |
fn=augment_images,
|
42 |
-
inputs=
|
43 |
-
outputs=gr.outputs.
|
44 |
-
title="Image Augmentation App",
|
45 |
-
description="Upload an image to generate augmented versions.
|
46 |
)
|
47 |
|
48 |
iface.launch()
|
|
|
1 |
+
import numpy as np
|
2 |
import gradio as gr
|
3 |
from tensorflow.keras.preprocessing.image import img_to_array, ImageDataGenerator
|
4 |
from PIL import Image
|
|
|
|
|
|
|
|
|
5 |
|
6 |
+
def augment_images(input_img):
|
7 |
+
# Define data augmentation parameters
|
8 |
datagen = ImageDataGenerator(
|
9 |
rotation_range=40,
|
10 |
width_shift_range=0.2,
|
|
|
12 |
shear_range=0.2,
|
13 |
zoom_range=0.2,
|
14 |
horizontal_flip=True,
|
15 |
+
fill_mode='nearest'
|
16 |
+
)
|
17 |
|
18 |
+
# Convert input image to numpy array
|
19 |
+
img = Image.open(input_img).convert('RGB')
|
20 |
img = img.resize((256, 256)) # Resize image
|
21 |
+
x = img_to_array(img)
|
22 |
+
x = x.reshape((1,) + x.shape)
|
23 |
|
24 |
+
# Generate augmented images
|
25 |
+
augmented_images = []
|
26 |
+
for _ in datagen.flow(x, batch_size=1, save_to_dir=None, save_prefix='', save_format='jpeg'):
|
27 |
+
augmented_images.append(_.squeeze())
|
28 |
+
if len(augmented_images) >= 5: # Generate 5 augmented samples
|
29 |
+
break
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
+
return augmented_images
|
32 |
|
33 |
iface = gr.Interface(
|
34 |
fn=augment_images,
|
35 |
+
inputs=gr.inputs.Image(label="Upload Image"),
|
36 |
+
outputs=gr.outputs.Image(type="numpy"),
|
37 |
+
title="Image Data Augmentation App",
|
38 |
+
description="Upload an image to generate augmented versions."
|
39 |
)
|
40 |
|
41 |
iface.launch()
|