import gradio as gr from tensorflow.keras.preprocessing.image import img_to_array, ImageDataGenerator from PIL import Image import numpy as np import os import zipfile import tempfile def augment_images(image_file, num_duplicates): datagen = ImageDataGenerator( rotation_range=40, width_shift_range=0.2, height_shift_range=0.2, shear_range=0.2, zoom_range=0.2, horizontal_flip=True, fill_mode='nearest') img = Image.open(image_file).convert('RGB') # Convert to RGB img = img.resize((256, 256)) # Resize image x = img_to_array(img) # Convert image to numpy array x = x.reshape((1,) + x.shape) # Reshape for data generator with tempfile.TemporaryDirectory() as temp_dir: i = 0 for _ in datagen.flow(x, batch_size=1, save_to_dir=temp_dir, save_prefix='aug', save_format='jpeg'): i += 1 if i >= num_duplicates: break # Zip the augmented images zip_name = tempfile.mktemp(suffix='.zip') with zipfile.ZipFile(zip_name, 'w', zipfile.ZIP_DEFLATED) as zipf: for root, _, files in os.walk(temp_dir): for file in files: zipf.write(os.path.join(root, file), arcname=file) return zip_name iface = gr.Interface( fn=augment_images, inputs=[gr.Image(shape=None, label="Upload Image", source="upload"), gr.Slider(minimum=1, maximum=20, default=5, label="Number of Augmented Samples")], outputs=gr.File(label="Download Augmented Images"), title="Image Augmentation App", description="Upload an image to generate augmented versions. Select the number of augmented duplicates you want for the image." ) iface.launch()