Spaces:
Runtime error
Runtime error
Update utils/langgraph_pipeline.py
Browse files- utils/langgraph_pipeline.py +53 -36
utils/langgraph_pipeline.py
CHANGED
@@ -1,5 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from langgraph.graph import StateGraph, END
|
2 |
from langgraph.prebuilt import ToolNode
|
|
|
3 |
from agents import (
|
4 |
product_manager_agent,
|
5 |
project_manager_agent,
|
@@ -7,16 +16,14 @@ from agents import (
|
|
7 |
software_engineer_agent,
|
8 |
quality_assurance_agent,
|
9 |
)
|
10 |
-
from langchain_core.messages import HumanMessage, AIMessage
|
11 |
-
from langchain_core.messages.base import BaseMessage
|
12 |
-
from typing import TypedDict, List
|
13 |
-
|
14 |
|
|
|
|
|
|
|
15 |
class InputState(TypedDict):
|
16 |
messages: List[BaseMessage]
|
17 |
chat_log: list
|
18 |
|
19 |
-
|
20 |
class OutputState(TypedDict):
|
21 |
pm_output: str
|
22 |
proj_output: str
|
@@ -25,20 +32,25 @@ class OutputState(TypedDict):
|
|
25 |
qa_output: str
|
26 |
chat_log: list
|
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
messages = state.get("messages", [])
|
32 |
-
chat_log = state.get("chat_log", [])
|
33 |
-
|
34 |
-
if not messages or not isinstance(messages[-1], HumanMessage):
|
35 |
-
raise ValueError("Expected last message to be a HumanMessage")
|
36 |
-
|
37 |
-
user_prompt = messages[-1].content
|
38 |
|
39 |
-
|
40 |
|
41 |
-
"{
|
42 |
|
43 |
Please convert this into a structured product specification including:
|
44 |
- Goals
|
@@ -46,26 +58,32 @@ Please convert this into a structured product specification including:
|
|
46 |
- User Stories
|
47 |
- Success Metrics
|
48 |
"""
|
49 |
-
|
50 |
-
new_ai_msg = AIMessage(content=structured_context)
|
51 |
-
|
52 |
return {
|
53 |
-
"messages":
|
54 |
-
"chat_log":
|
55 |
}
|
56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
-
#
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
pm_node = ToolNode([product_manager_agent.run])
|
63 |
proj_node = ToolNode([project_manager_agent.run])
|
64 |
arch_node = ToolNode([software_architect_agent.run])
|
65 |
-
dev_node
|
66 |
-
qa_node
|
67 |
|
68 |
-
#
|
|
|
|
|
69 |
graph = StateGraph(input=InputState, output=OutputState)
|
70 |
|
71 |
graph.add_node("Bridge", bridge_node)
|
@@ -85,16 +103,15 @@ graph.add_edge("QualityAssurance", END)
|
|
85 |
|
86 |
compiled_graph = graph.compile()
|
87 |
|
88 |
-
|
89 |
-
#
|
|
|
90 |
def run_pipeline_and_save(prompt: str):
|
91 |
initial_state = {
|
92 |
"messages": [HumanMessage(content=prompt)],
|
93 |
"chat_log": [],
|
94 |
}
|
95 |
-
|
96 |
-
#
|
97 |
-
assert isinstance(initial_state["messages"][-1], HumanMessage)
|
98 |
-
|
99 |
final_state = compiled_graph.invoke(initial_state)
|
100 |
-
return final_state["chat_log"], final_state["qa_output"]
|
|
|
1 |
+
# MAC/utils/langgraph_pipeline.py
|
2 |
+
|
3 |
+
from typing import TypedDict, List
|
4 |
+
|
5 |
+
from langchain_core.messages import HumanMessage, AIMessage
|
6 |
+
from langchain_core.messages.base import BaseMessage
|
7 |
+
from langchain_core.tools.structured import StructuredTool
|
8 |
+
|
9 |
from langgraph.graph import StateGraph, END
|
10 |
from langgraph.prebuilt import ToolNode
|
11 |
+
|
12 |
from agents import (
|
13 |
product_manager_agent,
|
14 |
project_manager_agent,
|
|
|
16 |
software_engineer_agent,
|
17 |
quality_assurance_agent,
|
18 |
)
|
|
|
|
|
|
|
|
|
19 |
|
20 |
+
# ββββββββββββββ
|
21 |
+
# 1) State types
|
22 |
+
# ββββββββββββββ
|
23 |
class InputState(TypedDict):
|
24 |
messages: List[BaseMessage]
|
25 |
chat_log: list
|
26 |
|
|
|
27 |
class OutputState(TypedDict):
|
28 |
pm_output: str
|
29 |
proj_output: str
|
|
|
32 |
qa_output: str
|
33 |
chat_log: list
|
34 |
|
35 |
+
# ββββββββββββββ
|
36 |
+
# 2) Bridge β ProductManager
|
37 |
+
# ββββββββββββββ
|
38 |
+
def bridge_to_product_manager(state: dict) -> dict:
|
39 |
+
"""
|
40 |
+
Convert the last HumanMessage into a structured system AIMessage
|
41 |
+
that the Product Manager agent can consume.
|
42 |
+
"""
|
43 |
+
msgs = state.get("messages")
|
44 |
+
logs = state.get("chat_log", [])
|
45 |
+
if not isinstance(msgs, list) or not msgs or not isinstance(msgs[-1], HumanMessage):
|
46 |
+
raise ValueError("Expected state['messages'] to be a non-empty list ending in a HumanMessage")
|
47 |
|
48 |
+
user_text = msgs[-1].content
|
49 |
+
spec = f"""# Stakeholder Prompt
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
+
A new product request has been submitted:
|
52 |
|
53 |
+
"{user_text}"
|
54 |
|
55 |
Please convert this into a structured product specification including:
|
56 |
- Goals
|
|
|
58 |
- User Stories
|
59 |
- Success Metrics
|
60 |
"""
|
61 |
+
ai = AIMessage(content=spec)
|
|
|
|
|
62 |
return {
|
63 |
+
"messages": msgs + [ai],
|
64 |
+
"chat_log": logs + [{"role": "System", "content": spec}],
|
65 |
}
|
66 |
|
67 |
+
# Create a StructuredTool (with explicit description) for the bridge
|
68 |
+
bridge_tool = StructuredTool.from_function(
|
69 |
+
func=bridge_to_product_manager,
|
70 |
+
name="bridge_to_product_manager",
|
71 |
+
description="Generate a structured AIMessage from a HumanMessage for the Product Manager agent."
|
72 |
+
)
|
73 |
+
bridge_node = ToolNode([bridge_tool])
|
74 |
|
75 |
+
# ββββββββββββββ
|
76 |
+
# 3) Wrap your LLM agents
|
77 |
+
# ββββββββββββββ
|
78 |
+
pm_node = ToolNode([product_manager_agent.run])
|
|
|
79 |
proj_node = ToolNode([project_manager_agent.run])
|
80 |
arch_node = ToolNode([software_architect_agent.run])
|
81 |
+
dev_node = ToolNode([software_engineer_agent.run])
|
82 |
+
qa_node = ToolNode([quality_assurance_agent.run])
|
83 |
|
84 |
+
# ββββββββββββββ
|
85 |
+
# 4) Build & compile the graph
|
86 |
+
# ββββββββββββββ
|
87 |
graph = StateGraph(input=InputState, output=OutputState)
|
88 |
|
89 |
graph.add_node("Bridge", bridge_node)
|
|
|
103 |
|
104 |
compiled_graph = graph.compile()
|
105 |
|
106 |
+
# ββββββββββββββ
|
107 |
+
# 5) Pipeline entrypoint
|
108 |
+
# ββββββββββββββ
|
109 |
def run_pipeline_and_save(prompt: str):
|
110 |
initial_state = {
|
111 |
"messages": [HumanMessage(content=prompt)],
|
112 |
"chat_log": [],
|
113 |
}
|
114 |
+
# this invoke will now see:
|
115 |
+
# Bridge β PM β ProjectManager β Architect β Engineer β QA β END
|
|
|
|
|
116 |
final_state = compiled_graph.invoke(initial_state)
|
117 |
+
return final_state["chat_log"], final_state["qa_output"]
|