Spaces:
Runtime error
Runtime error
Update utils/langgraph_pipeline.py
Browse files- utils/langgraph_pipeline.py +8 -14
utils/langgraph_pipeline.py
CHANGED
@@ -8,15 +8,13 @@ from agents import (
|
|
8 |
quality_assurance_agent,
|
9 |
)
|
10 |
from langchain_core.messages import HumanMessage, AIMessage
|
11 |
-
from langchain_core.messages.base import BaseMessage
|
12 |
from typing import TypedDict, List
|
13 |
-
|
14 |
|
15 |
class InputState(TypedDict):
|
16 |
messages: List[BaseMessage]
|
17 |
chat_log: list
|
18 |
|
19 |
-
|
20 |
class OutputState(TypedDict):
|
21 |
pm_output: str
|
22 |
proj_output: str
|
@@ -25,10 +23,10 @@ class OutputState(TypedDict):
|
|
25 |
qa_output: str
|
26 |
chat_log: list
|
27 |
|
28 |
-
|
29 |
-
# ✅ DO NOT USE @tool here — this bypasses LangChain's strict typing enforcement
|
30 |
def bridge_to_product_manager(state: dict) -> dict:
|
31 |
-
"""
|
|
|
|
|
32 |
user_prompt = state["messages"][-1].content
|
33 |
|
34 |
system_spec = f"""# Stakeholder Prompt
|
@@ -45,17 +43,16 @@ Please analyze and generate a structured product specification including goals,
|
|
45 |
"chat_log": state["chat_log"] + [{"role": "System", "content": system_spec}],
|
46 |
}
|
47 |
|
|
|
|
|
|
|
48 |
|
49 |
-
# ✅ Use ToolNode.from_function to avoid StructuredTool issues
|
50 |
-
bridge_node = ToolNode.from_function(bridge_to_product_manager)
|
51 |
pm_node = ToolNode([product_manager_agent.run])
|
52 |
proj_node = ToolNode([project_manager_agent.run])
|
53 |
arch_node = ToolNode([software_architect_agent.run])
|
54 |
dev_node = ToolNode([software_engineer_agent.run])
|
55 |
qa_node = ToolNode([quality_assurance_agent.run])
|
56 |
|
57 |
-
|
58 |
-
# LangGraph setup
|
59 |
graph = StateGraph(input=InputState, output=OutputState)
|
60 |
|
61 |
graph.add_node("Bridge", bridge_node)
|
@@ -75,13 +72,10 @@ graph.add_edge("QualityAssurance", END)
|
|
75 |
|
76 |
compiled_graph = graph.compile()
|
77 |
|
78 |
-
|
79 |
def run_pipeline_and_save(prompt: str):
|
80 |
initial_state = {
|
81 |
"messages": [HumanMessage(content=prompt)],
|
82 |
"chat_log": [],
|
83 |
}
|
84 |
-
|
85 |
final_state = compiled_graph.invoke(initial_state)
|
86 |
-
|
87 |
-
return final_state["chat_log"], final_state["qa_output"]
|
|
|
8 |
quality_assurance_agent,
|
9 |
)
|
10 |
from langchain_core.messages import HumanMessage, AIMessage
|
|
|
11 |
from typing import TypedDict, List
|
12 |
+
from langchain_core.messages.base import BaseMessage
|
13 |
|
14 |
class InputState(TypedDict):
|
15 |
messages: List[BaseMessage]
|
16 |
chat_log: list
|
17 |
|
|
|
18 |
class OutputState(TypedDict):
|
19 |
pm_output: str
|
20 |
proj_output: str
|
|
|
23 |
qa_output: str
|
24 |
chat_log: list
|
25 |
|
|
|
|
|
26 |
def bridge_to_product_manager(state: dict) -> dict:
|
27 |
+
"""
|
28 |
+
Convert HumanMessage into structured AIMessage for Product Manager agent.
|
29 |
+
"""
|
30 |
user_prompt = state["messages"][-1].content
|
31 |
|
32 |
system_spec = f"""# Stakeholder Prompt
|
|
|
43 |
"chat_log": state["chat_log"] + [{"role": "System", "content": system_spec}],
|
44 |
}
|
45 |
|
46 |
+
# Define the bridge node as a simple function node
|
47 |
+
def bridge_node(state: dict) -> dict:
|
48 |
+
return bridge_to_product_manager(state)
|
49 |
|
|
|
|
|
50 |
pm_node = ToolNode([product_manager_agent.run])
|
51 |
proj_node = ToolNode([project_manager_agent.run])
|
52 |
arch_node = ToolNode([software_architect_agent.run])
|
53 |
dev_node = ToolNode([software_engineer_agent.run])
|
54 |
qa_node = ToolNode([quality_assurance_agent.run])
|
55 |
|
|
|
|
|
56 |
graph = StateGraph(input=InputState, output=OutputState)
|
57 |
|
58 |
graph.add_node("Bridge", bridge_node)
|
|
|
72 |
|
73 |
compiled_graph = graph.compile()
|
74 |
|
|
|
75 |
def run_pipeline_and_save(prompt: str):
|
76 |
initial_state = {
|
77 |
"messages": [HumanMessage(content=prompt)],
|
78 |
"chat_log": [],
|
79 |
}
|
|
|
80 |
final_state = compiled_graph.invoke(initial_state)
|
81 |
+
return final_state["chat_log"], final_state["qa_output"]
|
|