Spaces:
Runtime error
Runtime error
Delete product_manager_agent.py
Browse files- product_manager_agent.py +0 -27
product_manager_agent.py
DELETED
@@ -1,27 +0,0 @@
|
|
1 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
2 |
-
import torch
|
3 |
-
from langchain_core.messages import AIMessage
|
4 |
-
|
5 |
-
MODEL_REPO = "Rahul-8799/product_manager_mistral"
|
6 |
-
|
7 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL_REPO, trust_remote_code=True)
|
8 |
-
model = AutoModelForCausalLM.from_pretrained(
|
9 |
-
MODEL_REPO,
|
10 |
-
torch_dtype=torch.float16,
|
11 |
-
device_map="auto"
|
12 |
-
)
|
13 |
-
|
14 |
-
def run(state: dict) -> dict:
|
15 |
-
"""Generates structured product requirements from user input prompt."""
|
16 |
-
messages = state["messages"]
|
17 |
-
prompt = messages[-1].content
|
18 |
-
|
19 |
-
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(model.device)
|
20 |
-
output_ids = model.generate(input_ids, max_new_tokens=3000)
|
21 |
-
output = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
22 |
-
|
23 |
-
return {
|
24 |
-
"messages": [AIMessage(content=output)],
|
25 |
-
"chat_log": state["chat_log"] + [{"role": "Product Manager", "content": output}],
|
26 |
-
"pm_output": output,
|
27 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|