Spaces:
Runtime error
Runtime error
Upload 6 files
Browse files
agents/product_manager_agent.py
CHANGED
@@ -1,6 +1,8 @@
|
|
1 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
2 |
import torch
|
3 |
from langchain_core.messages import AIMessage
|
|
|
|
|
4 |
|
5 |
MODEL_REPO = "Rahul-8799/product_manager_mistral"
|
6 |
|
@@ -11,15 +13,43 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
11 |
device_map="auto"
|
12 |
)
|
13 |
|
14 |
-
def
|
15 |
-
"""
|
16 |
-
messages = state["messages"]
|
17 |
-
prompt = messages[-1].content
|
18 |
-
|
19 |
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(model.device)
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
return {
|
24 |
"messages": [AIMessage(content=output)],
|
25 |
"chat_log": state["chat_log"] + [{"role": "Product Manager", "content": output}],
|
|
|
1 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
2 |
import torch
|
3 |
from langchain_core.messages import AIMessage
|
4 |
+
import asyncio
|
5 |
+
from typing import Generator, Dict, Any
|
6 |
|
7 |
MODEL_REPO = "Rahul-8799/product_manager_mistral"
|
8 |
|
|
|
13 |
device_map="auto"
|
14 |
)
|
15 |
|
16 |
+
async def stream_inference(prompt: str) -> Generator[str, None, None]:
|
17 |
+
"""Stream the model's output token by token"""
|
|
|
|
|
|
|
18 |
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(model.device)
|
19 |
+
|
20 |
+
# Generate tokens one by one
|
21 |
+
for _ in range(100): # Limit to 100 tokens for streaming demo
|
22 |
+
output_ids = model.generate(
|
23 |
+
input_ids,
|
24 |
+
max_new_tokens=1,
|
25 |
+
pad_token_id=tokenizer.eos_token_id
|
26 |
+
)
|
27 |
+
|
28 |
+
# Get the new token
|
29 |
+
new_token = output_ids[0][-1]
|
30 |
+
if new_token == tokenizer.eos_token_id:
|
31 |
+
break
|
32 |
+
|
33 |
+
# Decode and yield the token
|
34 |
+
token_text = tokenizer.decode([new_token])
|
35 |
+
yield token_text
|
36 |
+
|
37 |
+
# Update input_ids for next iteration
|
38 |
+
input_ids = output_ids
|
39 |
+
|
40 |
+
# Small delay to simulate streaming
|
41 |
+
await asyncio.sleep(0.05)
|
42 |
|
43 |
+
async def run(state: Dict[str, Any]) -> Dict[str, Any]:
|
44 |
+
"""Product Manager generates structured product requirements with streaming output"""
|
45 |
+
messages = state["messages"]
|
46 |
+
prompt = messages[-1].content
|
47 |
+
|
48 |
+
# Stream the output
|
49 |
+
output = ""
|
50 |
+
async for token in stream_inference(prompt):
|
51 |
+
output += token
|
52 |
+
|
53 |
return {
|
54 |
"messages": [AIMessage(content=output)],
|
55 |
"chat_log": state["chat_log"] + [{"role": "Product Manager", "content": output}],
|
agents/software_engineer_agent.py
CHANGED
@@ -18,7 +18,7 @@ def run(state: dict) -> dict:
|
|
18 |
|
19 |
# Enhance the prompt with UI implementation guidelines
|
20 |
enhanced_prompt = f"""
|
21 |
-
|
22 |
|
23 |
Generate modern, responsive, and accessible UI code that is visually appealing and adheres to current frontend development best practices.
|
24 |
|
|
|
18 |
|
19 |
# Enhance the prompt with UI implementation guidelines
|
20 |
enhanced_prompt = f"""
|
21 |
+
Objective
|
22 |
|
23 |
Generate modern, responsive, and accessible UI code that is visually appealing and adheres to current frontend development best practices.
|
24 |
|
agents/ui_designer_agent.py
CHANGED
@@ -2,7 +2,7 @@ from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
2 |
import torch
|
3 |
from langchain_core.messages import AIMessage
|
4 |
|
5 |
-
MODEL_REPO = "Rahul-8799/
|
6 |
|
7 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_REPO, trust_remote_code=True)
|
8 |
model = AutoModelForCausalLM.from_pretrained(
|
|
|
2 |
import torch
|
3 |
from langchain_core.messages import AIMessage
|
4 |
|
5 |
+
MODEL_REPO = "Rahul-8799/ui_designer_mistral" # You'll need to fine-tune this model
|
6 |
|
7 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_REPO, trust_remote_code=True)
|
8 |
model = AutoModelForCausalLM.from_pretrained(
|