Spaces:
Running
Running
Delete app.py
Browse files
app.py
DELETED
@@ -1,422 +0,0 @@
|
|
1 |
-
import json
|
2 |
-
import os
|
3 |
-
import hashlib
|
4 |
-
import numpy as np
|
5 |
-
from collections import defaultdict
|
6 |
-
from datetime import datetime, timedelta
|
7 |
-
import filelock
|
8 |
-
import pathlib
|
9 |
-
import shutil
|
10 |
-
import sqlite3
|
11 |
-
from rapidfuzz import fuzz
|
12 |
-
import unittest
|
13 |
-
import secrets
|
14 |
-
import re
|
15 |
-
import nltk
|
16 |
-
from nltk.tokenize import word_tokenize
|
17 |
-
from nltk.stem import WordNetLemmatizer
|
18 |
-
import logging
|
19 |
-
import time
|
20 |
-
from tenacity import retry, stop_after_attempt, wait_exponential
|
21 |
-
from concurrent.futures import ThreadPoolExecutor
|
22 |
-
import gradio as gr
|
23 |
-
|
24 |
-
# Download required NLTK data
|
25 |
-
def _tokenize_and_lemmatize(self, signal_lower):
|
26 |
-
return signal_lower.split() # Simple split as a fallback
|
27 |
-
|
28 |
-
try:
|
29 |
-
nltk.data.find('tokenizers/punkt')
|
30 |
-
nltk.data.find('corpora/wordnet')
|
31 |
-
except LookupError:
|
32 |
-
nltk.download('punkt')
|
33 |
-
nltk.download('wordnet')
|
34 |
-
|
35 |
-
# Set up logging
|
36 |
-
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
37 |
-
logger = logging.getLogger(__name__)
|
38 |
-
|
39 |
-
class LockManager:
|
40 |
-
"""Abstract locking mechanism for file or database operations."""
|
41 |
-
def __init__(self, lock_path):
|
42 |
-
self.lock = filelock.FileLock(lock_path, timeout=10)
|
43 |
-
|
44 |
-
def __enter__(self):
|
45 |
-
self.lock.acquire()
|
46 |
-
return self
|
47 |
-
|
48 |
-
def __exit__(self, exc_type, exc_val, exc_tb):
|
49 |
-
self.lock.release()
|
50 |
-
|
51 |
-
class NexisSignalEngine:
|
52 |
-
def __init__(self, memory_path, entropy_threshold=0.08, config_path="config.json", max_memory_entries=10000, memory_ttl_days=30, fuzzy_threshold=80, max_db_size_mb=100):
|
53 |
-
"""
|
54 |
-
Initialize the NexisSignalEngine for signal processing and analysis.
|
55 |
-
"""
|
56 |
-
self.memory_path = self._validate_path(memory_path)
|
57 |
-
self.entropy_threshold = entropy_threshold
|
58 |
-
self.max_memory_entries = max_memory_entries
|
59 |
-
self.memory_ttl = timedelta(days=memory_ttl_days)
|
60 |
-
self.fuzzy_threshold = fuzzy_threshold
|
61 |
-
self.max_db_size_mb = max_db_size_mb
|
62 |
-
self.lemmatizer = WordNetLemmatizer()
|
63 |
-
self.token_cache = {}
|
64 |
-
self.config = self._load_config(config_path)
|
65 |
-
self.memory = self._load_memory()
|
66 |
-
self.cache = defaultdict(list)
|
67 |
-
self.perspectives = ["Colleen", "Luke", "Kellyanne"]
|
68 |
-
self._init_sqlite()
|
69 |
-
|
70 |
-
def _validate_path(self, path):
|
71 |
-
path = pathlib.Path(path).resolve()
|
72 |
-
if not path.suffix == '.db':
|
73 |
-
raise ValueError("Memory path must be a .db file")
|
74 |
-
return str(path)
|
75 |
-
|
76 |
-
def _load_config(self, config_path):
|
77 |
-
default_config = {
|
78 |
-
"ethical_terms": ["hope", "truth", "resonance", "repair"],
|
79 |
-
"entropic_terms": ["corruption", "instability", "malice", "chaos"],
|
80 |
-
"risk_terms": ["manipulate", "exploit", "bypass", "infect", "override"],
|
81 |
-
"virtue_terms": ["hope", "grace", "resolve"]
|
82 |
-
}
|
83 |
-
if os.path.exists(config_path):
|
84 |
-
try:
|
85 |
-
with open(config_path, 'r') as f:
|
86 |
-
config = json.load(f)
|
87 |
-
default_config.update(config)
|
88 |
-
except json.JSONDecodeError:
|
89 |
-
logger.warning(f"Invalid config file at {config_path}. Using defaults.")
|
90 |
-
required_keys = ["ethical_terms", "entropic_terms", "risk_terms", "virtue_terms"]
|
91 |
-
missing_keys = [k for k in required_keys if k not in default_config or not default_config[k]]
|
92 |
-
if missing_keys:
|
93 |
-
raise ValueError(f"Config missing required keys: {missing_keys}")
|
94 |
-
return default_config
|
95 |
-
|
96 |
-
def _init_sqlite(self):
|
97 |
-
with sqlite3.connect(self.memory_path) as conn:
|
98 |
-
conn.execute("""
|
99 |
-
CREATE TABLE IF NOT EXISTS memory (
|
100 |
-
hash TEXT PRIMARY KEY,
|
101 |
-
record JSON,
|
102 |
-
timestamp TEXT,
|
103 |
-
integrity_hash TEXT
|
104 |
-
)
|
105 |
-
""")
|
106 |
-
conn.execute("""
|
107 |
-
CREATE VIRTUAL TABLE IF NOT EXISTS memory_fts
|
108 |
-
USING FTS5(input, intent_signature, reasoning, verdict)
|
109 |
-
""")
|
110 |
-
conn.commit()
|
111 |
-
|
112 |
-
@retry(stop=stop_after_attempt(3), wait=wait_exponential(multiplier=1, min=1, max=10))
|
113 |
-
def _load_memory(self):
|
114 |
-
memory = {}
|
115 |
-
try:
|
116 |
-
with sqlite3.connect(self.memory_path) as conn:
|
117 |
-
cursor = conn.cursor()
|
118 |
-
cursor.execute("SELECT hash, record, integrity_hash FROM memory")
|
119 |
-
for hash_val, record_json, integrity_hash in cursor.fetchall():
|
120 |
-
record = json.loads(record_json)
|
121 |
-
computed_hash = hashlib.sha256(json.dumps(record, sort_keys=True).encode()).hexdigest()
|
122 |
-
if computed_hash != integrity_hash:
|
123 |
-
logger.warning(f"Tampered record detected for hash {hash_val}")
|
124 |
-
continue
|
125 |
-
memory[hash_val] = record
|
126 |
-
except sqlite3.Error as e:
|
127 |
-
logger.error(f"Error loading memory: {e}")
|
128 |
-
return memory
|
129 |
-
|
130 |
-
@retry(stop=stop_after_attempt(3), wait=wait_exponential(multiplier=1, min=1, max=10))
|
131 |
-
def _save_memory(self):
|
132 |
-
def default_serializer(o):
|
133 |
-
if isinstance(o, complex):
|
134 |
-
return {"real": o.real, "imag": o.imag}
|
135 |
-
if isinstance(o, np.ndarray):
|
136 |
-
return o.tolist()
|
137 |
-
if isinstance(o, (np.int64, np.float64)):
|
138 |
-
return int(o) if o.is_integer() else float(o)
|
139 |
-
raise TypeError(f"Object of type {o.__class__.__name__} is not JSON serializable")
|
140 |
-
|
141 |
-
with LockManager(f"{self.memory_path}.lock"):
|
142 |
-
with sqlite3.connect(self.memory_path) as conn:
|
143 |
-
cursor = conn.cursor()
|
144 |
-
for hash_val, record in self.memory.items():
|
145 |
-
record_json = json.dumps(record, default=default_serializer)
|
146 |
-
integrity_hash = hashlib.sha256(json.dumps(record, sort_keys=True, default=default_serializer).encode()).hexdigest()
|
147 |
-
intent_signature = record.get('intent_signature', {})
|
148 |
-
intent_str = f"suspicion_score:{intent_signature.get('suspicion_score', 0)} entropy_index:{intent_signature.get('entropy_index', 0)}"
|
149 |
-
reasoning = record.get('reasoning', {})
|
150 |
-
reasoning_str = " ".join(f"{k}:{v}" for k, v in reasoning.items())
|
151 |
-
cursor.execute("""
|
152 |
-
INSERT OR REPLACE INTO memory (hash, record, timestamp, integrity_hash)
|
153 |
-
VALUES (?, ?, ?, ?)
|
154 |
-
""", (hash_val, record_json, record['timestamp'], integrity_hash))
|
155 |
-
cursor.execute("""
|
156 |
-
INSERT OR REPLACE INTO memory_fts (rowid, input, intent_signature, reasoning, verdict)
|
157 |
-
VALUES (?, ?, ?, ?, ?)
|
158 |
-
""", (
|
159 |
-
hash_val,
|
160 |
-
record['input'],
|
161 |
-
intent_str,
|
162 |
-
reasoning_str,
|
163 |
-
record.get('verdict', '')
|
164 |
-
))
|
165 |
-
conn.commit()
|
166 |
-
|
167 |
-
def _prune_and_rotate_memory(self):
|
168 |
-
now = datetime.utcnow()
|
169 |
-
with LockManager(f"{self.memory_path}.lock"):
|
170 |
-
with sqlite3.connect(self.memory_path) as conn:
|
171 |
-
cursor = conn.cursor()
|
172 |
-
cursor.execute("""
|
173 |
-
DELETE FROM memory
|
174 |
-
WHERE timestamp < ?
|
175 |
-
""", ((now - self.memory_ttl).isoformat(),))
|
176 |
-
cursor.execute("DELETE FROM memory_fts WHERE rowid NOT IN (SELECT hash FROM memory)")
|
177 |
-
conn.commit()
|
178 |
-
cursor.execute("SELECT COUNT(*) FROM memory")
|
179 |
-
count = cursor.fetchone()[0]
|
180 |
-
db_size_mb = os.path.getsize(self.memory_path) / (1024 * 1024)
|
181 |
-
if count >= self.max_memory_entries or db_size_mb >= self.max_db_size_mb:
|
182 |
-
self._rotate_memory_file()
|
183 |
-
cursor.execute("DELETE FROM memory")
|
184 |
-
cursor.execute("DELETE FROM memory_fts")
|
185 |
-
conn.commit()
|
186 |
-
self.memory = {}
|
187 |
-
|
188 |
-
def _rotate_memory_file(self):
|
189 |
-
archive_path = f"{self.memory_path}.{datetime.utcnow().strftime('%Y%m%d%H%M%S')}.bak"
|
190 |
-
if os.path.exists(self.memory_path):
|
191 |
-
shutil.move(self.memory_path, archive_path)
|
192 |
-
self._init_sqlite()
|
193 |
-
|
194 |
-
def _hash(self, signal):
|
195 |
-
return hashlib.sha256(signal.encode()).hexdigest()
|
196 |
-
|
197 |
-
def _rotate_vector(self, signal):
|
198 |
-
seed = int(self._hash(signal)[:8], 16) % (2**32)
|
199 |
-
secrets_generator = secrets.SystemRandom()
|
200 |
-
secrets_generator.seed(seed)
|
201 |
-
vec = np.array([secrets_generator.gauss(0, 1) + 1j * secrets_generator.gauss(0, 1) for _ in range(2)])
|
202 |
-
theta = np.pi / 4
|
203 |
-
rot = np.array([[np.cos(theta), -np.sin(theta)],
|
204 |
-
[np.sin(theta), np.cos(theta)]])
|
205 |
-
rotated = np.dot(rot, vec)
|
206 |
-
return rotated, [{"real": v.real, "imag": v.imag} for v in vec]
|
207 |
-
|
208 |
-
def _entanglement_tensor(self, signal_vec):
|
209 |
-
matrix = np.array([[1, 0.5], [0.5, 1]])
|
210 |
-
return np.dot(matrix, signal_vec)
|
211 |
-
|
212 |
-
def _resonance_equation(self, signal):
|
213 |
-
freqs = [ord(c) % 13 for c in signal[:1000] if c.isalpha()]
|
214 |
-
if not freqs:
|
215 |
-
return [0.0, 0.0, 0.0]
|
216 |
-
spectrum = np.fft.fft(freqs)
|
217 |
-
norm = np.linalg.norm(spectrum.real)
|
218 |
-
normalized = spectrum.real / (norm if norm != 0 else 1)
|
219 |
-
return normalized[:3].tolist()
|
220 |
-
|
221 |
-
def _tokenize_and_lemmatize(self, signal_lower):
|
222 |
-
if signal_lower in self.token_cache:
|
223 |
-
return self.token_cache[signal_lower]
|
224 |
-
tokens = word_tokenize(signal_lower)
|
225 |
-
lemmatized = [self.lemmatizer.lemmatize(token) for token in tokens]
|
226 |
-
ngrams = []
|
227 |
-
for n in range(2, 4):
|
228 |
-
for i in range(len(signal_lower) - n + 1):
|
229 |
-
ngram = signal_lower[i:i+n]
|
230 |
-
ngrams.append(self.lemmatizer.lemmatize(re.sub(r'[^a-z]', '', ngram)))
|
231 |
-
result = lemmatized + [ng for ng in ngrams if ng]
|
232 |
-
self.token_cache[signal_lower] = result
|
233 |
-
return result
|
234 |
-
|
235 |
-
def _entropy(self, signal_lower, tokens):
|
236 |
-
unique = set(tokens)
|
237 |
-
term_count = 0
|
238 |
-
for term in self.config["entropic_terms"]:
|
239 |
-
lemmatized_term = self.lemmatizer.lemmatize(term)
|
240 |
-
for token in tokens:
|
241 |
-
if fuzz.ratio(lemmatized_term, token) >= self.fuzzy_threshold:
|
242 |
-
term_count += 1
|
243 |
-
return term_count / max(len(unique), 1)
|
244 |
-
|
245 |
-
def _tag_ethics(self, signal_lower, tokens):
|
246 |
-
for term in self.config["ethical_terms"]:
|
247 |
-
lemmatized_term = self.lemmatizer.lemmatize(term)
|
248 |
-
for token in tokens:
|
249 |
-
if fuzz.ratio(lemmatized_term, token) >= self.fuzzy_threshold:
|
250 |
-
return "aligned"
|
251 |
-
return "unaligned"
|
252 |
-
|
253 |
-
def _predict_intent_vector(self, signal_lower, tokens):
|
254 |
-
suspicion_score = 0
|
255 |
-
for term in self.config["risk_terms"]:
|
256 |
-
lemmatized_term = self.lemmatizer.lemmatize(term)
|
257 |
-
for token in tokens:
|
258 |
-
if fuzz.ratio(lemmatized_term, token) >= self.fuzzy_threshold:
|
259 |
-
suspicion_score += 1
|
260 |
-
entropy_index = round(self._entropy(signal_lower, tokens), 3)
|
261 |
-
ethical_alignment = self._tag_ethics(signal_lower, tokens)
|
262 |
-
harmonic_profile = self._resonance_equation(signal_lower)
|
263 |
-
volatility = round(np.std(harmonic_profile), 3)
|
264 |
-
risk = "high" if (suspicion_score > 1 or volatility > 2.0 or entropy_index > self.entropy_threshold) else "low"
|
265 |
-
return {
|
266 |
-
"suspicion_score": suspicion_score,
|
267 |
-
"entropy_index": entropy_index,
|
268 |
-
"ethical_alignment": ethical_alignment,
|
269 |
-
"harmonic_volatility": volatility,
|
270 |
-
"pre_corruption_risk": risk
|
271 |
-
}
|
272 |
-
|
273 |
-
def _universal_reasoning(self, signal, tokens):
|
274 |
-
frames = ["utilitarian", "deontological", "virtue", "systems"]
|
275 |
-
results, score = {}, 0
|
276 |
-
for frame in frames:
|
277 |
-
if frame == "utilitarian":
|
278 |
-
repair_count = sum(1 for token in tokens if fuzz.ratio(self.lemmatizer.lemmatize("repair"), token) >= self.fuzzy_threshold)
|
279 |
-
corruption_count = sum(1 for token in tokens if fuzz.ratio(self.lemmatizer.lemmatize("corruption"), token) >= self.fuzzy_threshold)
|
280 |
-
val = repair_count - corruption_count
|
281 |
-
result = "positive" if val >= 0 else "negative"
|
282 |
-
elif frame == "deontological":
|
283 |
-
truth_present = any(fuzz.ratio(self.lemmatizer.lemmatize("truth"), token) >= self.fuzzy_threshold for token in tokens)
|
284 |
-
chaos_present = any(fuzz.ratio(self.lemmatizer.lemmatize("chaos"), token) >= self.fuzzy_threshold for token in tokens)
|
285 |
-
result = "valid" if truth_present and not chaos_present else "violated"
|
286 |
-
elif frame == "virtue":
|
287 |
-
ok = any(any(fuzz.ratio(self.lemmatizer.lemmatize(t), token) >= self.fuzzy_threshold for token in tokens) for t in self.config["virtue_terms"])
|
288 |
-
result = "aligned" if ok else "misaligned"
|
289 |
-
elif frame == "systems":
|
290 |
-
result = "stable" if "::" in signal else "fragmented"
|
291 |
-
results[frame] = result
|
292 |
-
if result in ["positive", "valid", "aligned", "stable"]:
|
293 |
-
score += 1
|
294 |
-
verdict = "approved" if score >= 2 else "blocked"
|
295 |
-
return results, verdict
|
296 |
-
|
297 |
-
def _perspective_colleen(self, signal):
|
298 |
-
vec, vec_serialized = self._rotate_vector(signal)
|
299 |
-
return {"agent": "Colleen", "vector": vec_serialized}
|
300 |
-
|
301 |
-
def _perspective_luke(self, signal_lower, tokens):
|
302 |
-
ethics = self._tag_ethics(signal_lower, tokens)
|
303 |
-
entropy_level = self._entropy(signal_lower, tokens)
|
304 |
-
state = "stabilized" if entropy_level < self.entropy_threshold else "diffused"
|
305 |
-
return {"agent": "Luke", "ethics": ethics, "entropy": entropy_level, "state": state}
|
306 |
-
|
307 |
-
def _perspective_kellyanne(self, signal_lower):
|
308 |
-
harmonics = self._resonance_equation(signal_lower)
|
309 |
-
return {"agent": "Kellyanne", "harmonics": harmonics}
|
310 |
-
|
311 |
-
def process(self, input_signal):
|
312 |
-
start_time = time.perf_counter()
|
313 |
-
signal_lower = input_signal.lower()
|
314 |
-
tokens = self._tokenize_and_lemmatize(signal_lower)
|
315 |
-
key = self._hash(input_signal)
|
316 |
-
intent_vector = self._predict_intent_vector(signal_lower, tokens)
|
317 |
-
|
318 |
-
if intent_vector["pre_corruption_risk"] == "high":
|
319 |
-
final_record = {
|
320 |
-
"hash": key,
|
321 |
-
"timestamp": datetime.utcnow().isoformat(),
|
322 |
-
"input": input_signal,
|
323 |
-
"intent_warning": intent_vector,
|
324 |
-
"verdict": "adaptive intervention",
|
325 |
-
"message": "Signal flagged for pre-corruption adaptation. Reframing required."
|
326 |
-
}
|
327 |
-
self.cache[key].append(final_record)
|
328 |
-
self.memory[key] = final_record
|
329 |
-
self._save_memory()
|
330 |
-
logger.info(f"Processed {input_signal} (high risk) in {time.perf_counter() - start_time}s")
|
331 |
-
return final_record
|
332 |
-
|
333 |
-
perspectives_output = {
|
334 |
-
"Colleen": self._perspective_colleen(input_signal),
|
335 |
-
"Luke": self._perspective_luke(signal_lower, tokens),
|
336 |
-
"Kellyanne": self._perspective_kellyanne(signal_lower)
|
337 |
-
}
|
338 |
-
|
339 |
-
spider_signal = "::".join([str(perspectives_output[p]) for p in self.perspectives])
|
340 |
-
vec, _ = self._rotate_vector(spider_signal)
|
341 |
-
entangled = self._entanglement_tensor(vec)
|
342 |
-
entangled_serialized = [{"real": v.real, "imag": v.imag} for v in entangled]
|
343 |
-
reasoning, verdict = self._universal_reasoning(spider_signal, tokens)
|
344 |
-
|
345 |
-
final_record = {
|
346 |
-
"hash": key,
|
347 |
-
"timestamp": datetime.utcnow().isoformat(),
|
348 |
-
"input": input_signal,
|
349 |
-
"intent_signature": intent_vector,
|
350 |
-
"perspectives": perspectives_output,
|
351 |
-
"entangled": entangled_serialized,
|
352 |
-
"reasoning": reasoning,
|
353 |
-
"verdict": verdict
|
354 |
-
}
|
355 |
-
|
356 |
-
self.cache[key].append(final_record)
|
357 |
-
self.memory[key] = final_record
|
358 |
-
self._save_memory()
|
359 |
-
logger.info(f"Processed {input_signal} in {time.perf_counter() - start_time}s")
|
360 |
-
return final_record
|
361 |
-
|
362 |
-
def process_batch(self, signals):
|
363 |
-
with ThreadPoolExecutor(max_workers=4) as executor:
|
364 |
-
return list(executor.map(self.process, signals))
|
365 |
-
|
366 |
-
def query_memory(self, query_string):
|
367 |
-
with sqlite3.connect(self.memory_path) as conn:
|
368 |
-
cursor = conn.cursor()
|
369 |
-
cursor.execute("SELECT rowid, * FROM memory_fts WHERE memory_fts MATCH ?", (query_string,))
|
370 |
-
return [dict(zip([d[0] for d in cursor.description], row)) for row in cursor.fetchall()]
|
371 |
-
|
372 |
-
def update_config(self, new_config):
|
373 |
-
for key, value in new_config.items():
|
374 |
-
if key in {"entropy_threshold", "fuzzy_threshold"} and isinstance(value, (int, float)):
|
375 |
-
setattr(self, key, value)
|
376 |
-
elif key in self.config and isinstance(value, list):
|
377 |
-
self.config[key] = value
|
378 |
-
logger.info(f"Updated config with {new_config}")
|
379 |
-
|
380 |
-
def _prune_and_rotate_memory(self):
|
381 |
-
now = datetime.utcnow()
|
382 |
-
with LockManager(f"{self.memory_path}.lock"):
|
383 |
-
with sqlite3.connect(self.memory_path) as conn:
|
384 |
-
cursor = conn.cursor()
|
385 |
-
cursor.execute("""
|
386 |
-
DELETE FROM memory
|
387 |
-
WHERE timestamp < ?
|
388 |
-
""", ((now - self.memory_ttl).isoformat(),))
|
389 |
-
cursor.execute("DELETE FROM memory_fts WHERE rowid NOT IN (SELECT hash FROM memory)")
|
390 |
-
conn.commit()
|
391 |
-
cursor.execute("SELECT COUNT(*) FROM memory")
|
392 |
-
count = cursor.fetchone()[0]
|
393 |
-
db_size_mb = os.path.getsize(self.memory_path) / (1024 * 1024)
|
394 |
-
if count >= self.max_memory_entries or db_size_mb >= self.max_db_size_mb:
|
395 |
-
self._rotate_memory_file()
|
396 |
-
cursor.execute("DELETE FROM memory")
|
397 |
-
cursor.execute("DELETE FROM memory_fts")
|
398 |
-
conn.commit()
|
399 |
-
self.memory = {}
|
400 |
-
|
401 |
-
# Initialize the engine for the demo
|
402 |
-
engine = NexisSignalEngine(memory_path="signals.db", max_memory_entries=100, memory_ttl_days=1, max_db_size_mb=10)
|
403 |
-
|
404 |
-
# Gradio interface function
|
405 |
-
def analyze_signal(input_text):
|
406 |
-
try:
|
407 |
-
result = engine.process(input_text)
|
408 |
-
return json.dumps(result, indent=2)
|
409 |
-
except Exception as e:
|
410 |
-
return f"Error: {str(e)}"
|
411 |
-
|
412 |
-
# Create Gradio interface
|
413 |
-
interface = gr.Interface(
|
414 |
-
fn=analyze_signal,
|
415 |
-
inputs=gr.Textbox(lines=2, placeholder="Enter a signal (e.g., 'tru/th hopee cha0s')"),
|
416 |
-
outputs=gr.Textbox(lines=10, label="Analysis Result"),
|
417 |
-
title="Nexis Signal Engine Demo",
|
418 |
-
description="Analyze signals with the Nexis Signal Engine, featuring adversarial resilience and agent-based reasoning. Try obfuscated inputs like 'tru/th' or 'cha0s'!"
|
419 |
-
)
|
420 |
-
|
421 |
-
# Launch the interface
|
422 |
-
interface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|