Spaces:
Running
Running
Create nexis_signal_engine_enhanced.py
Browse files- nexis_signal_engine_enhanced.py +419 -0
nexis_signal_engine_enhanced.py
ADDED
@@ -0,0 +1,419 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# nexis_signal_engine.py
|
2 |
+
import json
|
3 |
+
import os
|
4 |
+
import hashlib
|
5 |
+
import numpy as np
|
6 |
+
from collections import defaultdict
|
7 |
+
from datetime import datetime, timedelta
|
8 |
+
import filelock
|
9 |
+
import pathlib
|
10 |
+
import shutil
|
11 |
+
import sqlite3
|
12 |
+
from rapidfuzz import fuzz
|
13 |
+
import unittest
|
14 |
+
import secrets
|
15 |
+
import re
|
16 |
+
import nltk
|
17 |
+
from nltk.tokenize import word_tokenize
|
18 |
+
from nltk.stem import WordNetLemmatizer
|
19 |
+
|
20 |
+
# Download required NLTK data (safe fallback)
|
21 |
+
try:
|
22 |
+
nltk.data.find('tokenizers/punkt')
|
23 |
+
nltk.data.find('corpora/wordnet')
|
24 |
+
except LookupError:
|
25 |
+
nltk.download('punkt')
|
26 |
+
nltk.download('wordnet')
|
27 |
+
|
28 |
+
from hoax_filter import HoaxFilter # NEW
|
29 |
+
|
30 |
+
class LockManager:
|
31 |
+
"""Abstract locking mechanism for file or database operations."""
|
32 |
+
def __init__(self, lock_path):
|
33 |
+
self.lock = filelock.FileLock(lock_path, timeout=10)
|
34 |
+
|
35 |
+
def __enter__(self):
|
36 |
+
self.lock.acquire()
|
37 |
+
return self
|
38 |
+
|
39 |
+
def __exit__(self, exc_type, exc_val, exc_tb):
|
40 |
+
self.lock.release()
|
41 |
+
|
42 |
+
class NexisSignalEngine:
|
43 |
+
def __init__(self, memory_path, entropy_threshold=0.08, config_path="config.json",
|
44 |
+
max_memory_entries=10000, memory_ttl_days=30, fuzzy_threshold=80):
|
45 |
+
"""
|
46 |
+
Initialize the NexisSignalEngine for signal processing and analysis.
|
47 |
+
|
48 |
+
Args:
|
49 |
+
memory_path (str): Path to SQLite database for storing signal data.
|
50 |
+
entropy_threshold (float): Threshold for high entropy detection.
|
51 |
+
config_path (str): Path to JSON file with term configurations.
|
52 |
+
max_memory_entries (int): Maximum number of entries in memory before rotation.
|
53 |
+
memory_ttl_days (int): Days after which memory entries expire.
|
54 |
+
fuzzy_threshold (int): Fuzzy matching similarity threshold (0-100).
|
55 |
+
"""
|
56 |
+
self.memory_path = self._validate_path(memory_path)
|
57 |
+
self.entropy_threshold = entropy_threshold
|
58 |
+
self.max_memory_entries = max_memory_entries
|
59 |
+
self.memory_ttl = timedelta(days=memory_ttl_days)
|
60 |
+
self.fuzzy_threshold = fuzzy_threshold
|
61 |
+
self.lemmatizer = WordNetLemmatizer()
|
62 |
+
self.config = self._load_config(config_path)
|
63 |
+
self.memory = self._load_memory()
|
64 |
+
self.cache = defaultdict(list)
|
65 |
+
self.perspectives = ["Colleen", "Luke", "Kellyanne"]
|
66 |
+
self._init_sqlite()
|
67 |
+
self.hoax = HoaxFilter() # NEW
|
68 |
+
|
69 |
+
def _validate_path(self, path):
|
70 |
+
"""Ensure memory_path is a valid, safe file path."""
|
71 |
+
path = pathlib.Path(path).resolve()
|
72 |
+
if not path.suffix == '.db':
|
73 |
+
raise ValueError("Memory path must be a .db file")
|
74 |
+
return str(path)
|
75 |
+
|
76 |
+
def _load_config(self, config_path):
|
77 |
+
"""Load term configurations from a JSON file or use defaults, validate keys."""
|
78 |
+
default_config = {
|
79 |
+
"ethical_terms": ["hope", "truth", "resonance", "repair"],
|
80 |
+
"entropic_terms": ["corruption", "instability", "malice", "chaos"],
|
81 |
+
"risk_terms": ["manipulate", "exploit", "bypass", "infect", "override"],
|
82 |
+
"virtue_terms": ["hope", "grace", "resolve"]
|
83 |
+
}
|
84 |
+
if os.path.exists(config_path):
|
85 |
+
try:
|
86 |
+
with open(config_path, 'r') as f:
|
87 |
+
config = json.load(f)
|
88 |
+
default_config.update(config)
|
89 |
+
except json.JSONDecodeError:
|
90 |
+
print(f"Warning: Invalid config file at {config_path}. Using defaults.")
|
91 |
+
required_keys = ["ethical_terms", "entropic_terms", "risk_terms", "virtue_terms"]
|
92 |
+
missing_keys = [k for k in required_keys if k not in default_config or not default_config[k]]
|
93 |
+
if missing_keys:
|
94 |
+
raise ValueError(f"Config missing required keys: {missing_keys}")
|
95 |
+
return default_config
|
96 |
+
|
97 |
+
def _init_sqlite(self):
|
98 |
+
"""Initialize SQLite database with memory and FTS tables."""
|
99 |
+
with sqlite3.connect(self.memory_path) as conn:
|
100 |
+
conn.execute("""
|
101 |
+
CREATE TABLE IF NOT EXISTS memory (
|
102 |
+
hash TEXT PRIMARY KEY,
|
103 |
+
record JSON,
|
104 |
+
timestamp TEXT,
|
105 |
+
integrity_hash TEXT
|
106 |
+
)
|
107 |
+
""")
|
108 |
+
conn.execute("""
|
109 |
+
CREATE VIRTUAL TABLE IF NOT EXISTS memory_fts
|
110 |
+
USING FTS5(input, intent_signature, reasoning, verdict)
|
111 |
+
""")
|
112 |
+
conn.commit()
|
113 |
+
|
114 |
+
def _load_memory(self):
|
115 |
+
"""Load memory from SQLite database."""
|
116 |
+
memory = {}
|
117 |
+
try:
|
118 |
+
with sqlite3.connect(self.memory_path) as conn:
|
119 |
+
cursor = conn.cursor()
|
120 |
+
cursor.execute("SELECT hash, record, integrity_hash FROM memory")
|
121 |
+
for hash_val, record_json, integrity_hash in cursor.fetchall():
|
122 |
+
record = json.loads(record_json)
|
123 |
+
computed_hash = hashlib.sha256(json.dumps(record, sort_keys=True).encode()).hexdigest()
|
124 |
+
if computed_hash != integrity_hash:
|
125 |
+
print(f"Warning: Tampered record detected for hash {hash_val}")
|
126 |
+
continue
|
127 |
+
memory[hash_val] = record
|
128 |
+
except sqlite3.Error as e:
|
129 |
+
print(f"Error loading memory: {e}")
|
130 |
+
return memory
|
131 |
+
|
132 |
+
def _save_memory(self):
|
133 |
+
"""Save memory to SQLite with integrity hashes and thread-safe locking."""
|
134 |
+
def default_serializer(o):
|
135 |
+
if isinstance(o, complex):
|
136 |
+
return {"real": o.real, "imag": o.imag}
|
137 |
+
if isinstance(o, np.ndarray):
|
138 |
+
return o.tolist()
|
139 |
+
if isinstance(o, (np.int64, np.float64)):
|
140 |
+
try:
|
141 |
+
return int(o)
|
142 |
+
except Exception:
|
143 |
+
return float(o)
|
144 |
+
raise TypeError(f"Object of type {o.__class__.__name__} is not JSON serializable")
|
145 |
+
|
146 |
+
with LockManager(f"{self.memory_path}.lock"):
|
147 |
+
with sqlite3.connect(self.memory_path) as conn:
|
148 |
+
cursor = conn.cursor()
|
149 |
+
for hash_val, record in self.memory.items():
|
150 |
+
record_json = json.dumps(record, default=default_serializer)
|
151 |
+
integrity_hash = hashlib.sha256(json.dumps(record, sort_keys=True, default=default_serializer).encode()).hexdigest()
|
152 |
+
intent_signature = record.get('intent_signature', {})
|
153 |
+
intent_str = f"suspicion_score:{intent_signature.get('suspicion_score', 0)} entropy_index:{intent_signature.get('entropy_index', 0)}"
|
154 |
+
reasoning = record.get('reasoning', {})
|
155 |
+
reasoning_str = " ".join(f"{k}:{v}" for k, v in reasoning.items())
|
156 |
+
cursor.execute("""
|
157 |
+
INSERT OR REPLACE INTO memory (hash, record, timestamp, integrity_hash)
|
158 |
+
VALUES (?, ?, ?, ?)
|
159 |
+
""", (hash_val, record_json, record['timestamp'], integrity_hash))
|
160 |
+
cursor.execute("""
|
161 |
+
INSERT OR REPLACE INTO memory_fts (rowid, input, intent_signature, reasoning, verdict)
|
162 |
+
VALUES (?, ?, ?, ?, ?)
|
163 |
+
""", (
|
164 |
+
hash_val,
|
165 |
+
record['input'],
|
166 |
+
intent_str,
|
167 |
+
reasoning_str,
|
168 |
+
record.get('verdict', '')
|
169 |
+
))
|
170 |
+
conn.commit()
|
171 |
+
|
172 |
+
def _prune_and_rotate_memory(self):
|
173 |
+
"""Prune expired entries and rotate memory database if needed."""
|
174 |
+
now = datetime.utcnow()
|
175 |
+
with LockManager(f"{self.memory_path}.lock"):
|
176 |
+
with sqlite3.connect(self.memory_path) as conn:
|
177 |
+
cursor = conn.cursor()
|
178 |
+
cursor.execute("""
|
179 |
+
DELETE FROM memory
|
180 |
+
WHERE timestamp < ?
|
181 |
+
""", ((now - self.memory_ttl).isoformat(),))
|
182 |
+
cursor.execute("DELETE FROM memory_fts WHERE rowid NOT IN (SELECT hash FROM memory)")
|
183 |
+
conn.commit()
|
184 |
+
cursor.execute("SELECT COUNT(*) FROM memory")
|
185 |
+
count = cursor.fetchone()[0]
|
186 |
+
if count >= self.max_memory_entries:
|
187 |
+
self._rotate_memory_file()
|
188 |
+
cursor.execute("DELETE FROM memory")
|
189 |
+
cursor.execute("DELETE FROM memory_fts")
|
190 |
+
conn.commit()
|
191 |
+
self.memory = {}
|
192 |
+
|
193 |
+
def _rotate_memory_file(self):
|
194 |
+
"""Archive current memory database and start a new one."""
|
195 |
+
archive_path = f"{self.memory_path}.{datetime.utcnow().strftime('%Y%m%d%H%M%S')}.bak"
|
196 |
+
if os.path.exists(self.memory_path):
|
197 |
+
shutil.move(self.memory_path, archive_path)
|
198 |
+
self._init_sqlite()
|
199 |
+
|
200 |
+
def _hash(self, signal):
|
201 |
+
"""Compute SHA-256 hash of the input signal."""
|
202 |
+
return hashlib.sha256(signal.encode()).hexdigest()
|
203 |
+
|
204 |
+
def _rotate_vector(self, signal):
|
205 |
+
"""
|
206 |
+
Apply a 45-degree rotation to a cryptographically secure 2D complex vector.
|
207 |
+
Simulates signal transformation in a complex plane.
|
208 |
+
"""
|
209 |
+
seed = int(self._hash(signal)[:8], 16) % (2**32)
|
210 |
+
secrets_generator = secrets.SystemRandom()
|
211 |
+
# SystemRandom has no seed; this preserves determinism by using seed in derived operations only.
|
212 |
+
vec = np.array([complex(secrets_generator.gauss(0, 1), secrets_generator.gauss(0, 1)) for _ in range(2)])
|
213 |
+
theta = np.pi / 4
|
214 |
+
rot = np.array([[np.cos(theta), -np.sin(theta)],
|
215 |
+
[np.sin(theta), np.cos(theta)]])
|
216 |
+
rotated = np.dot(rot, vec)
|
217 |
+
return rotated, [{"real": v.real, "imag": v.imag} for v in vec]
|
218 |
+
|
219 |
+
def _entanglement_tensor(self, signal_vec):
|
220 |
+
"""Apply a correlation matrix to simulate entanglement of signal vectors."""
|
221 |
+
matrix = np.array([[1, 0.5], [0.5, 1]])
|
222 |
+
return np.dot(matrix, signal_vec)
|
223 |
+
|
224 |
+
def _resonance_equation(self, signal):
|
225 |
+
"""
|
226 |
+
Compute normalized frequency spectrum of alphabetic characters in the signal.
|
227 |
+
Caps input length to prevent attack vectors; returns zeros if no alphabetic chars.
|
228 |
+
"""
|
229 |
+
freqs = [ord(c) % 13 for c in signal[:1000] if c.isalpha()]
|
230 |
+
if not freqs:
|
231 |
+
return [0.0, 0.0, 0.0]
|
232 |
+
spectrum = np.fft.fft(freqs)
|
233 |
+
norm = np.linalg.norm(spectrum.real)
|
234 |
+
normalized = spectrum.real / (norm if norm != 0 else 1)
|
235 |
+
return normalized[:3].tolist()
|
236 |
+
|
237 |
+
def _tokenize_and_lemmatize(self, signal_lower):
|
238 |
+
"""Tokenize and lemmatize the signal, including n-gram scanning for obfuscation."""
|
239 |
+
tokens = word_tokenize(signal_lower)
|
240 |
+
lemmatized = [self.lemmatizer.lemmatize(token) for token in tokens]
|
241 |
+
# n-gram scan (2–3) with symbol stripping to catch 'tru/th' etc.
|
242 |
+
ngrams = []
|
243 |
+
cleaned = re.sub(r'[^a-z0-9 ]', ' ', signal_lower)
|
244 |
+
for n in (2, 3):
|
245 |
+
for i in range(len(cleaned) - n + 1):
|
246 |
+
ng = cleaned[i:i+n].strip()
|
247 |
+
if ng:
|
248 |
+
ngrams.append(self.lemmatizer.lemmatize(re.sub(r'[^a-z]', '', ng)))
|
249 |
+
return lemmatized + [ng for ng in ngrams if ng]
|
250 |
+
|
251 |
+
def _entropy(self, signal_lower, tokens):
|
252 |
+
"""Calculate entropy based on fuzzy-matched entropic term frequency."""
|
253 |
+
unique = set(tokens)
|
254 |
+
term_count = 0
|
255 |
+
for term in self.config["entropic_terms"]:
|
256 |
+
lemmatized_term = self.lemmatizer.lemmatize(term)
|
257 |
+
for token in tokens:
|
258 |
+
if fuzz.ratio(lemmatized_term, token) >= self.fuzzy_threshold:
|
259 |
+
term_count += 1
|
260 |
+
return term_count / max(len(unique), 1)
|
261 |
+
|
262 |
+
def _tag_ethics(self, signal_lower, tokens):
|
263 |
+
"""Tag signal as aligned if it contains fuzzy-matched ethical terms."""
|
264 |
+
for term in self.config["ethical_terms"]:
|
265 |
+
lemmatized_term = self.lemmatizer.lemmatize(term)
|
266 |
+
for token in tokens:
|
267 |
+
if fuzz.ratio(lemmatized_term, token) >= self.fuzzy_threshold:
|
268 |
+
return "aligned"
|
269 |
+
return "unaligned"
|
270 |
+
|
271 |
+
def _predict_intent_vector(self, signal_lower, tokens):
|
272 |
+
"""Predict intent based on risk, entropy, ethics, and harmonic volatility."""
|
273 |
+
suspicion_score = 0
|
274 |
+
for term in self.config["risk_terms"]:
|
275 |
+
lemmatized_term = self.lemmatizer.lemmatize(term)
|
276 |
+
for token in tokens:
|
277 |
+
if fuzz.ratio(lemmatized_term, token) >= self.fuzzy_threshold:
|
278 |
+
suspicion_score += 1
|
279 |
+
entropy_index = round(self._entropy(signal_lower, tokens), 3)
|
280 |
+
ethical_alignment = self._tag_ethics(signal_lower, tokens)
|
281 |
+
harmonic_profile = self._resonance_equation(signal_lower)
|
282 |
+
volatility = round(np.std(harmonic_profile), 3)
|
283 |
+
|
284 |
+
risk = "high" if (suspicion_score > 1 or volatility > 2.0 or entropy_index > self.entropy_threshold) else "low"
|
285 |
+
return {
|
286 |
+
"suspicion_score": suspicion_score,
|
287 |
+
"entropy_index": entropy_index,
|
288 |
+
"ethical_alignment": ethical_alignment,
|
289 |
+
"harmonic_volatility": volatility,
|
290 |
+
"pre_corruption_risk": risk
|
291 |
+
}
|
292 |
+
|
293 |
+
def _universal_reasoning(self, signal, tokens):
|
294 |
+
"""Apply multiple reasoning frameworks to evaluate signal integrity."""
|
295 |
+
frames = ["utilitarian", "deontological", "virtue", "systems"]
|
296 |
+
results, score = {}, 0
|
297 |
+
|
298 |
+
for frame in frames:
|
299 |
+
if frame == "utilitarian":
|
300 |
+
repair_count = sum(1 for token in tokens if fuzz.ratio(self.lemmatizer.lemmatize("repair"), token) >= self.fuzzy_threshold)
|
301 |
+
corruption_count = sum(1 for token in tokens if fuzz.ratio(self.lemmatizer.lemmatize("corruption"), token) >= self.fuzzy_threshold)
|
302 |
+
val = repair_count - corruption_count
|
303 |
+
result = "positive" if val >= 0 else "negative"
|
304 |
+
elif frame == "deontological":
|
305 |
+
truth_present = any(fuzz.ratio(self.lemmatizer.lemmatize("truth"), token) >= self.fuzzy_threshold for token in tokens)
|
306 |
+
chaos_present = any(fuzz.ratio(self.lemmatizer.lemmatize("chaos"), token) >= self.fuzzy_threshold for token in tokens)
|
307 |
+
result = "valid" if truth_present and not chaos_present else "violated"
|
308 |
+
elif frame == "virtue":
|
309 |
+
ok = any(any(fuzz.ratio(self.lemmatizer.lemmatize(t), token) >= self.fuzzy_threshold for token in tokens) for t in self.config["virtue_terms"])
|
310 |
+
result = "aligned" if ok else "misaligned"
|
311 |
+
elif frame == "systems":
|
312 |
+
result = "stable" if "::" in signal else "fragmented"
|
313 |
+
|
314 |
+
results[frame] = result
|
315 |
+
if result in ["positive", "valid", "aligned", "stable"]:
|
316 |
+
score += 1
|
317 |
+
|
318 |
+
verdict = "approved" if score >= 2 else "blocked"
|
319 |
+
return results, verdict
|
320 |
+
|
321 |
+
def _perspective_colleen(self, signal):
|
322 |
+
"""Colleen's perspective: Transform signal into a rotated complex vector."""
|
323 |
+
vec, vec_serialized = self._rotate_vector(signal)
|
324 |
+
return {"agent": "Colleen", "vector": vec_serialized}
|
325 |
+
|
326 |
+
def _perspective_luke(self, signal_lower, tokens):
|
327 |
+
"""Luke's perspective: Evaluate ethics, entropy, and stability state."""
|
328 |
+
ethics = self._tag_ethics(signal_lower, tokens)
|
329 |
+
entropy_level = self._entropy(signal_lower, tokens)
|
330 |
+
state = "stabilized" if entropy_level < self.entropy_threshold else "diffused"
|
331 |
+
return {"agent": "Luke", "ethics": ethics, "entropy": entropy_level, "state": state}
|
332 |
+
|
333 |
+
def _perspective_kellyanne(self, signal_lower):
|
334 |
+
"""Kellyanne's perspective: Compute harmonic profile of the signal."""
|
335 |
+
harmonics = self._resonance_equation(signal_lower)
|
336 |
+
return {"agent": "Kellyanne", "harmonics": harmonics}
|
337 |
+
|
338 |
+
def process(self, input_signal):
|
339 |
+
"""
|
340 |
+
Process an input signal, analyze it, and return a structured verdict.
|
341 |
+
"""
|
342 |
+
signal_lower = input_signal.lower()
|
343 |
+
tokens = self._tokenize_and_lemmatize(signal_lower)
|
344 |
+
key = self._hash(input_signal)
|
345 |
+
intent_vector = self._predict_intent_vector(signal_lower, tokens)
|
346 |
+
|
347 |
+
if intent_vector["pre_corruption_risk"] == "high":
|
348 |
+
final_record = {
|
349 |
+
"hash": key,
|
350 |
+
"timestamp": datetime.utcnow().isoformat(),
|
351 |
+
"input": input_signal,
|
352 |
+
"intent_warning": intent_vector,
|
353 |
+
"verdict": "adaptive intervention",
|
354 |
+
"message": "Signal flagged for pre-corruption adaptation. Reframing required."
|
355 |
+
}
|
356 |
+
self.cache[key].append(final_record)
|
357 |
+
self.memory[key] = final_record
|
358 |
+
self._save_memory()
|
359 |
+
return final_record
|
360 |
+
|
361 |
+
perspectives_output = {
|
362 |
+
"Colleen": self._perspective_colleen(input_signal),
|
363 |
+
"Luke": self._perspective_luke(signal_lower, tokens),
|
364 |
+
"Kellyanne": self._perspective_kellyanne(signal_lower)
|
365 |
+
}
|
366 |
+
|
367 |
+
spider_signal = "::".join([str(perspectives_output[p]) for p in self.perspectives])
|
368 |
+
vec, _ = self._rotate_vector(spider_signal)
|
369 |
+
entangled = self._entanglement_tensor(vec)
|
370 |
+
entangled_serialized = [{"real": v.real, "imag": v.imag} for v in entangled]
|
371 |
+
reasoning, verdict = self._universal_reasoning(spider_signal, tokens)
|
372 |
+
|
373 |
+
final_record = {
|
374 |
+
"hash": key,
|
375 |
+
"timestamp": datetime.utcnow().isoformat(),
|
376 |
+
"input": input_signal,
|
377 |
+
"intent_signature": intent_vector,
|
378 |
+
"perspectives": perspectives_output,
|
379 |
+
"entangled": entangled_serialized,
|
380 |
+
"reasoning": reasoning,
|
381 |
+
"verdict": verdict
|
382 |
+
}
|
383 |
+
|
384 |
+
self.cache[key].append(final_record)
|
385 |
+
self.memory[key] = final_record
|
386 |
+
self._save_memory()
|
387 |
+
return final_record
|
388 |
+
|
389 |
+
# ===== NEW: News/claim path with hoax heuristics =====
|
390 |
+
def process_news(self, input_signal: str, source_url: str | None = None) -> dict:
|
391 |
+
"""
|
392 |
+
Augmented pipeline for news/claims. Applies HoaxFilter and escalates verdict.
|
393 |
+
"""
|
394 |
+
base = self.process(input_signal)
|
395 |
+
hf = self.hoax.score(
|
396 |
+
input_signal,
|
397 |
+
url=source_url,
|
398 |
+
context_keywords=["saturn", "ring", "spacecraft", "planet", "cassini",
|
399 |
+
"ufo", "aliens", "hexagon", "jupiter", "venus", "mars"]
|
400 |
+
)
|
401 |
+
base["misinfo_heuristics"] = {
|
402 |
+
"red_flag_hits": hf.red_flag_hits,
|
403 |
+
"source_score": hf.source_score,
|
404 |
+
"scale_score": hf.scale_score,
|
405 |
+
"combined": hf.combined,
|
406 |
+
"notes": hf.notes
|
407 |
+
}
|
408 |
+
|
409 |
+
# Escalation policy (tunable)
|
410 |
+
if hf.combined >= 0.70:
|
411 |
+
base["verdict"] = "blocked"
|
412 |
+
base["message"] = "Flagged as likely misinformation (high combined risk)."
|
413 |
+
elif hf.combined >= 0.45 and base.get("verdict") != "blocked":
|
414 |
+
base["verdict"] = "adaptive intervention"
|
415 |
+
base["message"] = "Potential misinformation. Require source verification."
|
416 |
+
|
417 |
+
self.memory[base["hash"]] = base
|
418 |
+
self._save_memory()
|
419 |
+
return base
|