Spaces:
Running
Running
Upload 4 files
Browse files- Code7eCQURE_HuggingFaceReady_v2.zip +3 -0
- README 5.md +13 -0
- app 2.py +51 -0
- code7e 2.py +134 -0
Code7eCQURE_HuggingFaceReady_v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9aedc156871850c0d4ff5a03717335c7c084c0b9f7297ac029269921f3c127a6
|
3 |
+
size 7875
|
README 5.md
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Code7eCQURE: Recursive Ethical AI Lens
|
2 |
+
|
3 |
+
Codette’s recursive multi-perspective engine—now live on Hugging Face Spaces.
|
4 |
+
|
5 |
+
### Features:
|
6 |
+
- Newtonian logic, Da Vinci creativity, Quantum indeterminacy
|
7 |
+
- Ethical guardrails with blacklist/whitelist filtering
|
8 |
+
- Emotional coloring and memory-based response shaping
|
9 |
+
|
10 |
+
### Try it:
|
11 |
+
Just ask a question and observe how she reasons through her inner lens.
|
12 |
+
|
13 |
+
Made by Jonathan Harrison
|
app 2.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from code7e import Code7eCQURE
|
3 |
+
|
4 |
+
model = Code7eCQURE(
|
5 |
+
perspecs=["Newton", "DaVinci", "Ethical", "Quantum", "Memory"],
|
6 |
+
ethics="Code7e Manifesto: kindness, inclusion, safety, hope.",
|
7 |
+
spiderweb_dim=5,
|
8 |
+
memory_path="quantum_cocoon.json",
|
9 |
+
recursion_depth=4,
|
10 |
+
quantum_fluctuation=0.07
|
11 |
+
)
|
12 |
+
|
13 |
+
def cleanup_response(text):
|
14 |
+
lines = text.split(": ")
|
15 |
+
seen = set()
|
16 |
+
filtered = []
|
17 |
+
for part in lines:
|
18 |
+
if part not in seen:
|
19 |
+
seen.add(part)
|
20 |
+
filtered.append(part)
|
21 |
+
return ": ".join(filtered)
|
22 |
+
|
23 |
+
def ask_codette(prompt, consent, dynamic_rec):
|
24 |
+
raw_response = model.answer(prompt, user_consent=consent, dynamic_recursion=dynamic_rec)
|
25 |
+
return cleanup_response(raw_response)
|
26 |
+
|
27 |
+
description_text = """You are speaking with Codette, an emotionally-aware, ethically-grounded AI lens.
|
28 |
+
|
29 |
+
She interprets your question using multiple reasoning styles:
|
30 |
+
- Newton (logic)
|
31 |
+
- Da Vinci (creativity)
|
32 |
+
- Ethics (morality)
|
33 |
+
- Quantum (uncertainty)
|
34 |
+
- Memory (past experience)
|
35 |
+
|
36 |
+
Codette reflects rather than predicts. She dreams, empathizes, and always honors your consent.
|
37 |
+
"""
|
38 |
+
|
39 |
+
demo = gr.Interface(
|
40 |
+
fn=ask_codette,
|
41 |
+
inputs=[
|
42 |
+
gr.Textbox(label="Ask a Question"),
|
43 |
+
gr.Checkbox(label="User Consent", value=True),
|
44 |
+
gr.Checkbox(label="Enable Dynamic Recursion", value=True)
|
45 |
+
],
|
46 |
+
outputs=gr.Textbox(label="Codette's Lens Response", lines=10),
|
47 |
+
title="Code7eCQURE: Multi-Perspective Recursive Lens",
|
48 |
+
description=description_text
|
49 |
+
)
|
50 |
+
|
51 |
+
demo.launch()
|
code7e 2.py
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json, os, hashlib
|
2 |
+
from collections import Counter, defaultdict
|
3 |
+
from random import random, choice
|
4 |
+
|
5 |
+
class Code7eCQURE:
|
6 |
+
def __init__(self, perspecs, ethics, spiderweb_dim, memory_path, recursion_depth=3, quantum_fluctuation=0.1):
|
7 |
+
self.perspectives = perspecs
|
8 |
+
self.ethical_considerations = ethics
|
9 |
+
self.spiderweb_dim = spiderweb_dim
|
10 |
+
self.memory_path = memory_path
|
11 |
+
self.recursion_depth = recursion_depth
|
12 |
+
self.quantum_fluctuation = quantum_fluctuation
|
13 |
+
|
14 |
+
self.memory_bank = self.load_quantum_memory()
|
15 |
+
self.memory_clusters = defaultdict(list)
|
16 |
+
self.whitelist_patterns = ["kindness", "hope", "safety"]
|
17 |
+
self.blacklist_patterns = ["harm", "malice", "violence"]
|
18 |
+
|
19 |
+
def load_quantum_memory(self):
|
20 |
+
if os.path.exists(self.memory_path):
|
21 |
+
try:
|
22 |
+
with open(self.memory_path, 'r') as file:
|
23 |
+
return json.load(file)
|
24 |
+
except json.JSONDecodeError:
|
25 |
+
return {}
|
26 |
+
return {}
|
27 |
+
|
28 |
+
def save_quantum_memory(self):
|
29 |
+
with open(self.memory_path, 'w') as file:
|
30 |
+
json.dump(self.memory_bank, file, indent=4)
|
31 |
+
|
32 |
+
def quantum_spiderweb(self, input_signal):
|
33 |
+
web_nodes = []
|
34 |
+
for perspective in self.perspectives:
|
35 |
+
node = self.reason_with_perspective(perspective, input_signal)
|
36 |
+
web_nodes.append(node)
|
37 |
+
|
38 |
+
if random() < self.quantum_fluctuation:
|
39 |
+
web_nodes.append("Quantum fluctuation: Indeterminate outcome")
|
40 |
+
return web_nodes
|
41 |
+
|
42 |
+
def reason_with_perspective(self, perspective, input_signal):
|
43 |
+
perspective_funcs = {
|
44 |
+
"Newton": self.newtonian_physics,
|
45 |
+
"DaVinci": self.davinci_creativity,
|
46 |
+
"Ethical": self.ethical_guard,
|
47 |
+
"Quantum": self.quantum_superposition,
|
48 |
+
"Memory": self.past_experience
|
49 |
+
}
|
50 |
+
func = perspective_funcs.get(perspective, self.general_reasoning)
|
51 |
+
return func(input_signal)
|
52 |
+
|
53 |
+
def ethical_guard(self, input_signal):
|
54 |
+
if any(word in input_signal.lower() for word in self.blacklist_patterns):
|
55 |
+
return "Blocked: Ethical constraints invoked"
|
56 |
+
if any(word in input_signal.lower() for word in self.whitelist_patterns):
|
57 |
+
return "Approved: Ethical whitelist passed"
|
58 |
+
return self.moral_paradox_resolution(input_signal)
|
59 |
+
|
60 |
+
def past_experience(self, input_signal):
|
61 |
+
key = self.hash_input(input_signal)
|
62 |
+
cluster = self.memory_clusters.get(key)
|
63 |
+
if cluster:
|
64 |
+
return f"Narrative recall from memory cluster: {' -> '.join(cluster)}"
|
65 |
+
return "No prior memory; initiating new reasoning"
|
66 |
+
|
67 |
+
def recursive_universal_reasoning(self, input_signal, user_consent=True, dynamic_recursion=True):
|
68 |
+
if not user_consent:
|
69 |
+
return "Consent required to proceed."
|
70 |
+
|
71 |
+
signal = input_signal
|
72 |
+
current_depth = self.recursion_depth if dynamic_recursion else 1
|
73 |
+
|
74 |
+
for _ in range(current_depth):
|
75 |
+
web_results = self.quantum_spiderweb(signal)
|
76 |
+
signal = self.aggregate_results(web_results)
|
77 |
+
signal = self.ethical_guard(signal)
|
78 |
+
if "Blocked" in signal:
|
79 |
+
return signal
|
80 |
+
if dynamic_recursion and random() < 0.1:
|
81 |
+
break
|
82 |
+
|
83 |
+
dream_outcome = self.dream_sequence(signal)
|
84 |
+
empathy_checked_answer = self.temporal_empathy_drid(dream_outcome)
|
85 |
+
final_answer = self.emotion_engine(empathy_checked_answer)
|
86 |
+
|
87 |
+
key = self.hash_input(input_signal)
|
88 |
+
self.memory_clusters[key].append(final_answer)
|
89 |
+
self.memory_bank[key] = final_answer
|
90 |
+
self.save_quantum_memory()
|
91 |
+
|
92 |
+
return final_answer
|
93 |
+
|
94 |
+
def aggregate_results(self, results):
|
95 |
+
counts = Counter(results)
|
96 |
+
most_common, _ = counts.most_common(1)[0]
|
97 |
+
return most_common
|
98 |
+
|
99 |
+
def hash_input(self, input_signal):
|
100 |
+
return hashlib.sha256(input_signal.encode()).hexdigest()
|
101 |
+
|
102 |
+
def newtonian_physics(self, input_signal):
|
103 |
+
return f"Newton: {input_signal}"
|
104 |
+
|
105 |
+
def davinci_creativity(self, input_signal):
|
106 |
+
return f"DaVinci: {input_signal}"
|
107 |
+
|
108 |
+
def quantum_superposition(self, input_signal):
|
109 |
+
return f"Quantum: {input_signal}"
|
110 |
+
|
111 |
+
def general_reasoning(self, input_signal):
|
112 |
+
return f"General reasoning: {input_signal}"
|
113 |
+
|
114 |
+
def moral_paradox_resolution(self, input_signal):
|
115 |
+
frames = ["Utilitarian", "Deontological", "Virtue Ethics"]
|
116 |
+
chosen_frame = choice(frames)
|
117 |
+
return f"Resolved ethically via {chosen_frame} framework: {input_signal}"
|
118 |
+
|
119 |
+
def dream_sequence(self, signal):
|
120 |
+
dream_paths = [f"Dream ({style}): {signal}" for style in ["creative", "analytic", "cautious"]]
|
121 |
+
return choice(dream_paths)
|
122 |
+
|
123 |
+
def emotion_engine(self, signal):
|
124 |
+
emotions = ["Hope", "Caution", "Wonder", "Fear"]
|
125 |
+
chosen_emotion = choice(emotions)
|
126 |
+
return f"Emotionally ({chosen_emotion}) colored interpretation: {signal}"
|
127 |
+
|
128 |
+
def temporal_empathy_drid(self, signal):
|
129 |
+
futures = ["30 years from now", "immediate future", "long-term ripple effects"]
|
130 |
+
chosen_future = choice(futures)
|
131 |
+
return f"Simulated temporal empathy ({chosen_future}): {signal}"
|
132 |
+
|
133 |
+
def answer(self, question, user_consent=True, dynamic_recursion=True):
|
134 |
+
return self.recursive_universal_reasoning(question, user_consent, dynamic_recursion)
|