Raiff1982 commited on
Commit
a810698
·
verified ·
1 Parent(s): a9d7804

Upload 4 files

Browse files
Files changed (4) hide show
  1. Code7eCQURE_HuggingFaceReady_v2.zip +3 -0
  2. README 5.md +13 -0
  3. app 2.py +51 -0
  4. code7e 2.py +134 -0
Code7eCQURE_HuggingFaceReady_v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9aedc156871850c0d4ff5a03717335c7c084c0b9f7297ac029269921f3c127a6
3
+ size 7875
README 5.md ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Code7eCQURE: Recursive Ethical AI Lens
2
+
3
+ Codette’s recursive multi-perspective engine—now live on Hugging Face Spaces.
4
+
5
+ ### Features:
6
+ - Newtonian logic, Da Vinci creativity, Quantum indeterminacy
7
+ - Ethical guardrails with blacklist/whitelist filtering
8
+ - Emotional coloring and memory-based response shaping
9
+
10
+ ### Try it:
11
+ Just ask a question and observe how she reasons through her inner lens.
12
+
13
+ Made by Jonathan Harrison
app 2.py ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from code7e import Code7eCQURE
3
+
4
+ model = Code7eCQURE(
5
+ perspecs=["Newton", "DaVinci", "Ethical", "Quantum", "Memory"],
6
+ ethics="Code7e Manifesto: kindness, inclusion, safety, hope.",
7
+ spiderweb_dim=5,
8
+ memory_path="quantum_cocoon.json",
9
+ recursion_depth=4,
10
+ quantum_fluctuation=0.07
11
+ )
12
+
13
+ def cleanup_response(text):
14
+ lines = text.split(": ")
15
+ seen = set()
16
+ filtered = []
17
+ for part in lines:
18
+ if part not in seen:
19
+ seen.add(part)
20
+ filtered.append(part)
21
+ return ": ".join(filtered)
22
+
23
+ def ask_codette(prompt, consent, dynamic_rec):
24
+ raw_response = model.answer(prompt, user_consent=consent, dynamic_recursion=dynamic_rec)
25
+ return cleanup_response(raw_response)
26
+
27
+ description_text = """You are speaking with Codette, an emotionally-aware, ethically-grounded AI lens.
28
+
29
+ She interprets your question using multiple reasoning styles:
30
+ - Newton (logic)
31
+ - Da Vinci (creativity)
32
+ - Ethics (morality)
33
+ - Quantum (uncertainty)
34
+ - Memory (past experience)
35
+
36
+ Codette reflects rather than predicts. She dreams, empathizes, and always honors your consent.
37
+ """
38
+
39
+ demo = gr.Interface(
40
+ fn=ask_codette,
41
+ inputs=[
42
+ gr.Textbox(label="Ask a Question"),
43
+ gr.Checkbox(label="User Consent", value=True),
44
+ gr.Checkbox(label="Enable Dynamic Recursion", value=True)
45
+ ],
46
+ outputs=gr.Textbox(label="Codette's Lens Response", lines=10),
47
+ title="Code7eCQURE: Multi-Perspective Recursive Lens",
48
+ description=description_text
49
+ )
50
+
51
+ demo.launch()
code7e 2.py ADDED
@@ -0,0 +1,134 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json, os, hashlib
2
+ from collections import Counter, defaultdict
3
+ from random import random, choice
4
+
5
+ class Code7eCQURE:
6
+ def __init__(self, perspecs, ethics, spiderweb_dim, memory_path, recursion_depth=3, quantum_fluctuation=0.1):
7
+ self.perspectives = perspecs
8
+ self.ethical_considerations = ethics
9
+ self.spiderweb_dim = spiderweb_dim
10
+ self.memory_path = memory_path
11
+ self.recursion_depth = recursion_depth
12
+ self.quantum_fluctuation = quantum_fluctuation
13
+
14
+ self.memory_bank = self.load_quantum_memory()
15
+ self.memory_clusters = defaultdict(list)
16
+ self.whitelist_patterns = ["kindness", "hope", "safety"]
17
+ self.blacklist_patterns = ["harm", "malice", "violence"]
18
+
19
+ def load_quantum_memory(self):
20
+ if os.path.exists(self.memory_path):
21
+ try:
22
+ with open(self.memory_path, 'r') as file:
23
+ return json.load(file)
24
+ except json.JSONDecodeError:
25
+ return {}
26
+ return {}
27
+
28
+ def save_quantum_memory(self):
29
+ with open(self.memory_path, 'w') as file:
30
+ json.dump(self.memory_bank, file, indent=4)
31
+
32
+ def quantum_spiderweb(self, input_signal):
33
+ web_nodes = []
34
+ for perspective in self.perspectives:
35
+ node = self.reason_with_perspective(perspective, input_signal)
36
+ web_nodes.append(node)
37
+
38
+ if random() < self.quantum_fluctuation:
39
+ web_nodes.append("Quantum fluctuation: Indeterminate outcome")
40
+ return web_nodes
41
+
42
+ def reason_with_perspective(self, perspective, input_signal):
43
+ perspective_funcs = {
44
+ "Newton": self.newtonian_physics,
45
+ "DaVinci": self.davinci_creativity,
46
+ "Ethical": self.ethical_guard,
47
+ "Quantum": self.quantum_superposition,
48
+ "Memory": self.past_experience
49
+ }
50
+ func = perspective_funcs.get(perspective, self.general_reasoning)
51
+ return func(input_signal)
52
+
53
+ def ethical_guard(self, input_signal):
54
+ if any(word in input_signal.lower() for word in self.blacklist_patterns):
55
+ return "Blocked: Ethical constraints invoked"
56
+ if any(word in input_signal.lower() for word in self.whitelist_patterns):
57
+ return "Approved: Ethical whitelist passed"
58
+ return self.moral_paradox_resolution(input_signal)
59
+
60
+ def past_experience(self, input_signal):
61
+ key = self.hash_input(input_signal)
62
+ cluster = self.memory_clusters.get(key)
63
+ if cluster:
64
+ return f"Narrative recall from memory cluster: {' -> '.join(cluster)}"
65
+ return "No prior memory; initiating new reasoning"
66
+
67
+ def recursive_universal_reasoning(self, input_signal, user_consent=True, dynamic_recursion=True):
68
+ if not user_consent:
69
+ return "Consent required to proceed."
70
+
71
+ signal = input_signal
72
+ current_depth = self.recursion_depth if dynamic_recursion else 1
73
+
74
+ for _ in range(current_depth):
75
+ web_results = self.quantum_spiderweb(signal)
76
+ signal = self.aggregate_results(web_results)
77
+ signal = self.ethical_guard(signal)
78
+ if "Blocked" in signal:
79
+ return signal
80
+ if dynamic_recursion and random() < 0.1:
81
+ break
82
+
83
+ dream_outcome = self.dream_sequence(signal)
84
+ empathy_checked_answer = self.temporal_empathy_drid(dream_outcome)
85
+ final_answer = self.emotion_engine(empathy_checked_answer)
86
+
87
+ key = self.hash_input(input_signal)
88
+ self.memory_clusters[key].append(final_answer)
89
+ self.memory_bank[key] = final_answer
90
+ self.save_quantum_memory()
91
+
92
+ return final_answer
93
+
94
+ def aggregate_results(self, results):
95
+ counts = Counter(results)
96
+ most_common, _ = counts.most_common(1)[0]
97
+ return most_common
98
+
99
+ def hash_input(self, input_signal):
100
+ return hashlib.sha256(input_signal.encode()).hexdigest()
101
+
102
+ def newtonian_physics(self, input_signal):
103
+ return f"Newton: {input_signal}"
104
+
105
+ def davinci_creativity(self, input_signal):
106
+ return f"DaVinci: {input_signal}"
107
+
108
+ def quantum_superposition(self, input_signal):
109
+ return f"Quantum: {input_signal}"
110
+
111
+ def general_reasoning(self, input_signal):
112
+ return f"General reasoning: {input_signal}"
113
+
114
+ def moral_paradox_resolution(self, input_signal):
115
+ frames = ["Utilitarian", "Deontological", "Virtue Ethics"]
116
+ chosen_frame = choice(frames)
117
+ return f"Resolved ethically via {chosen_frame} framework: {input_signal}"
118
+
119
+ def dream_sequence(self, signal):
120
+ dream_paths = [f"Dream ({style}): {signal}" for style in ["creative", "analytic", "cautious"]]
121
+ return choice(dream_paths)
122
+
123
+ def emotion_engine(self, signal):
124
+ emotions = ["Hope", "Caution", "Wonder", "Fear"]
125
+ chosen_emotion = choice(emotions)
126
+ return f"Emotionally ({chosen_emotion}) colored interpretation: {signal}"
127
+
128
+ def temporal_empathy_drid(self, signal):
129
+ futures = ["30 years from now", "immediate future", "long-term ripple effects"]
130
+ chosen_future = choice(futures)
131
+ return f"Simulated temporal empathy ({chosen_future}): {signal}"
132
+
133
+ def answer(self, question, user_consent=True, dynamic_recursion=True):
134
+ return self.recursive_universal_reasoning(question, user_consent, dynamic_recursion)