Spaces:
Build error
Build error
File size: 10,174 Bytes
7293b6f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
import asyncio
import json
import os
import logging
from typing import List
# Ensure vaderSentiment is installed
try:
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
except ModuleNotFoundError:
import subprocess
import sys
subprocess.check_call([sys.executable, "-m", "pip", "install", "vaderSentiment"])
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
# Ensure nltk is installed and download required data
try:
import nltk
from nltk.tokenize import word_tokenize
nltk.download('punkt', quiet=True)
except ImportError:
import subprocess
import sys
subprocess.check_call([sys.executable, "-m", "pip", "install", "nltk"])
import nltk
from nltk.tokenize import word_tokenize
nltk.download('punkt', quiet=True)
# Import perspectives
from perspectives import (
NewtonPerspective, DaVinciPerspective, HumanIntuitionPerspective,
NeuralNetworkPerspective, QuantumComputingPerspective, ResilientKindnessPerspective,
MathematicalPerspective, PhilosophicalPerspective, CopilotPerspective, BiasMitigationPerspective
)
# Load environment variables
from dotenv import load_dotenv
load_dotenv()
azure_openai_api_key = os.getenv('AZURE_OPENAI_API_KEY')
azure_openai_endpoint = os.getenv('AZURE_OPENAI_ENDPOINT')
# Setup Logging
def setup_logging(config):
if config.get('logging_enabled', True):
log_level = config.get('log_level', 'DEBUG').upper()
numeric_level = getattr(logging, log_level, logging.DEBUG)
logging.basicConfig(
filename='universal_reasoning.log',
level=numeric_level,
format='%(asctime)s - %(levelname)s - %(message)s'
)
else:
logging.disable(logging.CRITICAL)
# Load JSON configuration
def load_json_config(file_path):
if not os.path.exists(file_path):
logging.error(f"Configuration file '{file_path}' not found.")
return {}
try:
with open(file_path, 'r') as file:
config = json.load(file)
logging.info(f"Configuration loaded from '{file_path}'.")
return config
except json.JSONDecodeError as e:
logging.error(f"Error decoding JSON from the configuration file '{file_path}': {e}")
return {}
# Initialize NLP (basic tokenization)
def analyze_question(question):
tokens = word_tokenize(question)
logging.debug(f"Question tokens: {tokens}")
return tokens
# Define the Element class
class Element:
def __init__(self, name, symbol, representation, properties, interactions, defense_ability):
self.name = name
self.symbol = symbol
self.representation = representation
self.properties = properties
self.interactions = interactions
self.defense_ability = defense_ability
def execute_defense_function(self):
message = f"{self.name} ({self.symbol}) executes its defense ability: {self.defense_ability}"
logging.info(message)
return message
# Define the CustomRecognizer class
class CustomRecognizer:
def recognize(self, question):
# Simple keyword-based recognizer for demonstration purposes
if any(element_name.lower() in question.lower() for element_name in ["hydrogen", "diamond"]):
return RecognizerResult(question)
return RecognizerResult(None)
def get_top_intent(self, recognizer_result):
if recognizer_result.text:
return "ElementDefense"
else:
return "None"
class RecognizerResult:
def __init__(self, text):
self.text = text
# Universal Reasoning Aggregator
class UniversalReasoning:
def __init__(self, config):
self.config = config
self.perspectives = self.initialize_perspectives()
self.elements = self.initialize_elements()
self.recognizer = CustomRecognizer()
# Initialize the sentiment analyzer
self.sentiment_analyzer = SentimentIntensityAnalyzer()
def initialize_perspectives(self):
perspective_names = self.config.get('enabled_perspectives', [
"newton",
"davinci",
"human_intuition",
"neural_network",
"quantum_computing",
"resilient_kindness",
"mathematical",
"philosophical",
"copilot",
"bias_mitigation"
])
perspective_classes = {
"newton": NewtonPerspective,
"davinci": DaVinciPerspective,
"human_intuition": HumanIntuitionPerspective,
"neural_network": NeuralNetworkPerspective,
"quantum_computing": QuantumComputingPerspective,
"resilient_kindness": ResilientKindnessPerspective,
"mathematical": MathematicalPerspective,
"philosophical": PhilosophicalPerspective,
"copilot": CopilotPerspective,
"bias_mitigation": BiasMitigationPerspective
}
perspectives = []
for name in perspective_names:
cls = perspective_classes.get(name.lower())
if cls:
perspectives.append(cls(self.config))
logging.debug(f"Perspective '{name}' initialized.")
else:
logging.warning(f"Perspective '{name}' is not recognized and will be skipped.")
return perspectives
def initialize_elements(self):
elements = [
Element(
name="Hydrogen",
symbol="H",
representation="Lua",
properties=["Simple", "Lightweight", "Versatile"],
interactions=["Easily integrates with other languages and systems"],
defense_ability="Evasion"
),
# You can add more elements as needed
Element(
name="Diamond",
symbol="D",
representation="Kotlin",
properties=["Modern", "Concise", "Safe"],
interactions=["Used for Android development"],
defense_ability="Adaptability"
)
]
return elements
async def generate_response(self, question):
responses = []
tasks = []
# Generate responses from perspectives concurrently
for perspective in self.perspectives:
if asyncio.iscoroutinefunction(perspective.generate_response):
tasks.append(perspective.generate_response(question))
else:
# Wrap synchronous functions in coroutine
async def sync_wrapper(perspective, question):
return perspective.generate_response(question)
tasks.append(sync_wrapper(perspective, question))
perspective_results = await asyncio.gather(*tasks, return_exceptions=True)
for perspective, result in zip(self.perspectives, perspective_results):
if isinstance(result, Exception):
logging.error(f"Error generating response from {perspective.__class__.__name__}: {result}")
else:
responses.append(result)
logging.debug(f"Response from {perspective.__class__.__name__}: {result}")
# Handle element defense logic
recognizer_result = self.recognizer.recognize(question)
top_intent = self.recognizer.get_top_intent(recognizer_result)
if top_intent == "ElementDefense":
element_name = recognizer_result.text.strip()
element = next(
(el for el in self.elements if el.name.lower() in element_name.lower()),
None
)
if element:
defense_message = element.execute_defense_function()
responses.append(defense_message)
else:
logging.info(f"No matching element found for '{element_name}'")
ethical_considerations = self.config.get(
'ethical_considerations',
"Always act with transparency, fairness, and respect for privacy."
)
responses.append(f"**Ethical Considerations:**\n{ethical_considerations}")
formatted_response = "\n\n".join(responses)
return formatted_response
def save_response(self, response):
if self.config.get('enable_response_saving', False):
save_path = self.config.get('response_save_path', 'responses.txt')
try:
with open(save_path, 'a', encoding='utf-8') as file:
file.write(response + '\n')
logging.info(f"Response saved to '{save_path}'.")
except Exception as e:
logging.error(f"Error saving response to '{save_path}': {e}")
def backup_response(self, response):
if self.config.get('backup_responses', {}).get('enabled', False):
backup_path = self.config['backup_responses'].get('backup_path', 'backup_responses.txt')
try:
with open(backup_path, 'a', encoding='utf-8') as file:
file.write(response + '\n')
logging.info(f"Response backed up to '{backup_path}'.")
except Exception as e:
logging.error(f"Error backing up response to '{backup_path}': {e}")
# Example usage
if __name__ == "__main__":
config = load_json_config('config.json')
# Add Azure OpenAI configurations to the config
config['azure_openai_api_key'] = azure_openai_api_key
config['azure_openai_endpoint'] = azure_openai_endpoint
setup_logging(config)
universal_reasoning = UniversalReasoning(config)
question = "Tell me about Hydrogen and its defense mechanisms."
response = asyncio.run(universal_reasoning.generate_response(question))
print(response)
if response:
universal_reasoning.save_response(response)
universal_reasoning.backup_response(response)
|