File size: 6,740 Bytes
7293b6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import logging
from botbuilder.core import TurnContext, MessageFactory, ConversationState, UserState
from botbuilder.schema import Activity, ActivityTypes, EndOfConversationCodes
from UniversalReasoning import UniversalReasoning  # Ensure correct import
import os
from dotenv import load_dotenv
from dialog_bot import DialogBot
from main_dialog import MainDialog

# Load environment variables from .env file
load_dotenv()

class MyBot(DialogBot):
    def __init__(self, conversation_state: ConversationState, user_state: UserState, dialog: MainDialog):
        super(MyBot, self).__init__(conversation_state, user_state, dialog)
        self.context = {}
        self.feedback = []
        config = load_and_validate_config('config.json', 'config_schema.json')
        # Add Azure OpenAI and LUIS configurations to the config
        config['azure_openai_api_key'] = os.getenv('AZURE_OPENAI_API_KEY')
        config['azure_openai_endpoint'] = os.getenv('AZURE_OPENAI_ENDPOINT')
        config['luis_endpoint'] = os.getenv('LUIS_ENDPOINT')
        config['luis_api_version'] = os.getenv('LUIS_API_VERSION')
        config['luis_api_key'] = os.getenv('LUIS_API_KEY')
        setup_logging(config)
        self.universal_reasoning = UniversalReasoning(config)

    async def enhance_context_awareness(self, user_id: str, text: str) -> None:
        """Enhance context awareness by analyzing the user's environment, activities, and emotional state."""
        sentiment = analyze_sentiment_vader(text)
        self.context[user_id].append({"text": text, "sentiment": sentiment})

    async def proactive_learning(self, user_id: str, feedback: str) -> None:
        """Encourage proactive learning by seeking feedback and exploring new topics."""
        self.context[user_id].append({"feedback": feedback})
        self.feedback.append({"user_id": user_id, "feedback": feedback})

    async def ethical_decision_making(self, user_id: str, decision: str) -> None:
        """Integrate ethical principles into decision-making processes."""
        ethical_decision = f"Considering ethical principles, the decision is: {decision}"
        self.context[user_id].append({"ethical_decision": ethical_decision})

    async def emotional_intelligence(self, user_id: str, text: str) -> str:
        """Develop emotional intelligence by recognizing and responding to user emotions."""
        sentiment = analyze_sentiment_vader(text)
        response = self.generate_emotional_response(sentiment, text)
        self.context[user_id].append({"emotional_response": response})
        return response

    def generate_emotional_response(self, sentiment: dict, text: str) -> str:
        """Generate an empathetic response based on the sentiment analysis."""
        if sentiment['compound'] >= 0.05:
            return "I'm glad to hear that! 😊 How can I assist you further?"
        elif sentiment['compound'] <= -0.05:
            return "I'm sorry to hear that. 😒 Is there anything I can do to help?"
        else:
            return "I understand. How can I assist you further?"

    async def transparency_and_explainability(self, user_id: str, decision: str) -> str:
        """Enable transparency by explaining the reasoning behind decisions."""
        explanation = f"The decision was made based on the following context: {self.context[user_id]}"
        self.context[user_id].append({"explanation": explanation})
        return explanation

    async def on_message_activity(self, turn_context: TurnContext) -> None:
        """Handles incoming messages and generates responses."""
        user_id = turn_context.activity.from_property.id
        if user_id not in self.context:
            self.context[user_id] = []
        try:
            message_text = turn_context.activity.text.strip().lower()
            if "end" in message_text or "stop" in message_text:
                await end_conversation(turn_context)
                self.context.pop(user_id, None)
            else:
                self.context[user_id].append(turn_context.activity.text)
                response = await self.generate_response(turn_context.activity.text, user_id)
                await turn_context.send_activity(MessageFactory.text(response))
                await self.request_feedback(turn_context, user_id)
        except Exception as e:
            await handle_error(turn_context, e)

    async def generate_response(self, text: str, user_id: str) -> str:
        """Generates a response using UniversalReasoning."""
        try:
            logging.info(f"Generating response for user_id: {user_id} with text: {text}")
            response = self.universal_reasoning.generate_response(text)
            logging.info(f"Generated response: {response}")
            return response
        except Exception as e:
            logging.error(f"Error generating response: {e}")
            return "Sorry, I couldn't generate a response at this time."

    async def request_feedback(self, turn_context: TurnContext, user_id: str) -> None:
        """Request feedback from the user about the bot's response."""
        feedback_prompt = "How would you rate my response? (good/neutral/bad)"
        await turn_context.send_activity(MessageFactory.text(feedback_prompt))

    async def handle_feedback(self, turn_context: TurnContext) -> None:
        """Handle user feedback and store it for future analysis."""
        user_id = turn_context.activity.from_property.id
        feedback = turn_context.activity.text.lower()
        if feedback in ["good", "neutral", "bad"]:
            self.feedback.append({"user_id": user_id, "feedback": feedback})
            await turn_context.send_activity(MessageFactory.text("Thank you for your feedback!"))
        else:
            await turn_context.send_activity(MessageFactory.text("Please provide feedback as 'good', 'neutral', or 'bad'."))

async def end_conversation(turn_context: TurnContext) -> None:
    """Ends the conversation with the user."""
    await turn_context.send_activity(
        MessageFactory.text("Ending conversation from the skill...")
    )
    end_of_conversation = Activity(type=ActivityTypes.end_of_conversation)
    end_of_conversation.code = EndOfConversationCodes.completed_successfully
    await turn_context.send_activity(end_of_conversation)

async def handle_error(turn_context: TurnContext, error: Exception) -> None:
    """Handles errors by logging them and notifying the user."""
    logging.error(f"An error occurred: {error}")
    await turn_context.send_activity(
        MessageFactory.text("An error occurred. Please try again later.")
    )