File size: 4,958 Bytes
7293b6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import faicons as fa
import plotly.express as px

# Load data and compute static values
from shared import app_dir, bot_data
from shinywidgets import render_plotly

from shiny import reactive, render
from shiny.express import input, ui

data_rng = (min(bot_data.interactions), max(bot_data.interactions))

# Add page title and sidebar
ui.page_opts(title="MyBot Interactions", fillable=True)

with ui.sidebar(open="desktop"):
    ui.input_slider(
        "interactions",
        "Number of Interactions",
        min=data_rng[0],
        max=data_rng[1],
        value=data_rng,
    )
    ui.input_checkbox_group(
        "time_period",
        "Time Period",
        ["Morning", "Afternoon", "Evening", "Night"],
        selected=["Morning", "Afternoon", "Evening", "Night"],
        inline=True,
    )
    ui.input_action_button("reset", "Reset filter")

# Add main content
ICONS = {
    "user": fa.icon_svg("user", "regular"),
    "chat": fa.icon_svg("comments"),
    "interaction": fa.icon_svg("exchange-alt"),
    "ellipsis": fa.icon_svg("ellipsis"),
}

with ui.layout_columns(fill=False):
    with ui.value_box(showcase=ICONS["user"]):
        "Total Users"

        @render.express
        def total_users():
            bot_data_filtered().shape[0]

    with ui.value_box(showcase=ICONS["chat"]):
        "Average Interactions per User"

        @render.express
        def average_interactions():
            d = bot_data_filtered()
            if d.shape[0] > 0:
                avg_interactions = d.interactions.mean()
                f"{avg_interactions:.1f}"

    with ui.value_box(showcase=ICONS["interaction"]):
        "Total Interactions"

        @render.express
        def total_interactions():
            d = bot_data_filtered()
            if d.shape[0] > 0:
                total_interactions = d.interactions.sum()
                f"{total_interactions}"

with ui.layout_columns(col_widths=[6, 6, 12]):
    with ui.card(full_screen=True):
        ui.card_header("Interaction Data")

        @render.data_frame
        def table():
            return render.DataGrid(bot_data_filtered())

    with ui.card(full_screen=True):
        with ui.card_header(class_="d-flex justify-content-between align-items-center"):
            "Interactions Over Time"
            with ui.popover(title="Add a color variable", placement="top"):
                ICONS["ellipsis"]
                ui.input_radio_buttons(
                    "scatter_color",
                    None,
                    ["none", "user_type", "time_period"],
                    inline=True,
                )

        @render_plotly
        def scatterplot():
            color = input.scatter_color()
            return px.scatter(
                bot_data_filtered(),
                x="time",
                y="interactions",
                color=None if color == "none" else color,
                trendline="lowess",
            )

    with ui.card(full_screen=True):
        with ui.card_header(class_="d-flex justify-content-between align-items-center"):
            "Interaction Types"
            with ui.popover(title="Add a color variable"):
                ICONS["ellipsis"]
                ui.input_radio_buttons(
                    "interaction_type",
                    "Split by:",
                    ["user_type", "time_period"],
                    selected="user_type",
                    inline=True,
                )

        @render_plotly
        def interaction_types():
            from ridgeplot import ridgeplot

            dat = bot_data_filtered()
            yvar = input.interaction_type()
            uvals = dat[yvar].unique()

            samples = [[dat.interactions[dat[yvar] == val]] for val in uvals]

            plt = ridgeplot(
                samples=samples,
                labels=uvals,
                bandwidth=0.01,
                colorscale="viridis",
                colormode="row-index",
            )

            plt.update_layout(
                legend=dict(
                    orientation="h", yanchor="bottom", y=1.02, xanchor="center", x=0.5
                )
            )

            return plt

ui.include_css(app_dir / "styles.css")

# --------------------------------------------------------
# Reactive calculations and effects
# --------------------------------------------------------

@reactive.calc
def bot_data_filtered():
    interactions = input.interactions()
    idx1 = bot_data.interactions.between(interactions[0], interactions[1])
    idx2 = bot_data.time_period.isin(input.time_period())
    return bot_data[idx1 & idx2]

@reactive.effect
@reactive.event(input.reset)
def _():
    ui.update_slider("interactions", value=data_rng)
    ui.update_checkbox_group("time_period", selected=["Morning", "Afternoon", "Evening", "Night"])