Spaces:
Build error
Build error
File size: 14,600 Bytes
7293b6f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 |
import asyncio import json import logging import os from typing import List, Dict, Any from cryptography.fernet import Fernet from botbuilder.core import StatePropertyAccessor, TurnContext from botbuilder.dialogs import Dialog, DialogSet, DialogTurnStatus from dialog_helper import DialogHelper import aiohttp import speech_recognition as sr from PIL import Image from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer # Ensure nltk is installed and download required data try: import nltk from nltk.tokenize import word_tokenize nltk.download('punkt', quiet=True) except ImportError: import subprocess import sys subprocess.check_call([sys.executable, "-m", "pip", "install", "nltk"]) import nltk from nltk.tokenize import word_tokenize nltk.download('punkt', quiet=True) # Import perspectives from perspectives import ( Perspective, NewtonPerspective, DaVinciPerspective, HumanIntuitionPerspective, NeuralNetworkPerspective, QuantumComputingPerspective, ResilientKindnessPerspective, MathematicalPerspective, PhilosophicalPerspective, CopilotPerspective, BiasMitigationPerspective, PsychologicalPerspective ) # Load environment variables from dotenv import load_dotenv load_dotenv() # Setup Logging def setup_logging(config): if config.get('logging_enabled', True): log_level = config.get('log_level', 'DEBUG').upper() numeric_level = getattr(logging, log_level, logging.DEBUG) logging.basicConfig( filename='universal_reasoning.log', level=numeric_level, format='%(asctime)s - %(levelname)s - %(message)s' ) else: logging.disable(logging.CRITICAL) # Load JSON configuration def load_json_config(file_path): if not os.path.exists(file_path): logging.error(f"Configuration file '{file_path}' not found.") return {} try: with open(file_path, 'r') as file: config = json.load(file) logging.info(f"Configuration loaded from '{file_path}'.") return config except json.JSONDecodeError as e: logging.error(f"Error decoding JSON from the configuration file '{file_path}': {e}") return {} # Encrypt sensitive information def encrypt_sensitive_data(data, key): fernet = Fernet(key) encrypted_data = fernet.encrypt(data.encode()) return encrypted_data # Decrypt sensitive information def decrypt_sensitive_data(encrypted_data, key): fernet = Fernet(key) decrypted_data = fernet.decrypt(encrypted_data).decode() return decrypted_data # Securely destroy sensitive information def destroy_sensitive_data(data): del data # Define the Element class class Element: def __init__(self, name, symbol, representation, properties, interactions, defense_ability): self.name = name self.symbol = symbol self.representation = representation self.properties = properties self.interactions = interactions self.defense_ability = defense_ability def execute_defense_function(self): message = f"{self.name} ({self.symbol}) executes its defense ability: {self.defense_ability}" logging.info(message) return message # Define the CustomRecognizer class class CustomRecognizer: def recognize(self, question): # Simple keyword-based recognizer for demonstration purposes if any(element_name.lower() in question.lower() for element_name in ["hydrogen", "diamond"]): return RecognizerResult(question) return RecognizerResult(None) def get_top_intent(self, recognizer_result): if recognizer_result.text: return "ElementDefense" else: return "None" class RecognizerResult: def __init__(self, text): self.text = text # Universal Reasoning Aggregator class UniversalReasoning: def __init__(self, config): self.config = config self.perspectives = self.initialize_perspectives() self.elements = self.initialize_elements() self.recognizer = CustomRecognizer() self.context_history = [] # Maintain context history self.feedback = [] # Store user feedback # Initialize the sentiment analyzer self.sentiment_analyzer = SentimentIntensityAnalyzer() def initialize_perspectives(self): perspective_names = self.config.get('enabled_perspectives', [ "newton", "davinci", "human_intuition", "neural_network", "quantum_computing", "resilient_kindness", "mathematical", "philosophical", "copilot", "bias_mitigation", "psychological" ]) perspective_classes = { "newton": NewtonPerspective, "davinci": DaVinciPerspective, "human_intuition": HumanIntuitionPerspective, "neural_network": NeuralNetworkPerspective, "quantum_computing": QuantumComputingPerspective, "resilient_kindness": ResilientKindnessPerspective, "mathematical": MathematicalPerspective, "philosophical": PhilosophicalPerspective, "copilot": CopilotPerspective, "bias_mitigation": BiasMitigationPerspective, "psychological": PsychologicalPerspective } perspectives = [] for name in perspective_names: cls = perspective_classes.get(name.lower()) if cls: perspectives.append(cls(self.config)) logging.debug(f"Perspective '{name}' initialized.") else: logging.warning(f"Perspective '{name}' is not recognized and will be skipped.") return perspectives def initialize_elements(self): elements = [ Element( name="Hydrogen", symbol="H", representation="Lua", properties=["Simple", "Lightweight", "Versatile"], interactions=["Easily integrates with other languages and systems"], defense_ability="Evasion" ), # You can add more elements as needed Element( name="Diamond", symbol="D", representation="Kotlin", properties=["Modern", "Concise", "Safe"], interactions=["Used for Android development"], defense_ability="Adaptability" ) ] return elements async def generate_response(self, question): self.context_history.append(question) # Add question to context history sentiment_score = self.analyze_sentiment(question) real_time_data = await self.fetch_real_time_data("https://api.example.com/data") responses = [] tasks = [] # Generate responses from perspectives concurrently for perspective in self.perspectives: if asyncio.iscoroutinefunction(perspective.generate_response): tasks.append(perspective.generate_response(question)) else: # Wrap synchronous functions in coroutine async def sync_wrapper(perspective, question): return perspective.generate_response(question) tasks.append(sync_wrapper(perspective, question)) perspective_results = await asyncio.gather(*tasks, return_exceptions=True) for perspective, result in zip(self.perspectives, perspective_results): if isinstance(result, Exception): logging.error(f"Error generating response from {perspective.__class__.__name__}: {result}") else: responses.append(result) logging.debug(f"Response from {perspective.__class__.__name__}: {result}") # Handle element defense logic recognizer_result = self.recognizer.recognize(question) top_intent = self.recognizer.get_top_intent(recognizer_result) if top_intent == "ElementDefense": element_name = recognizer_result.text.strip() element = next( (el for el in self.elements if el.name.lower() in element_name.lower()), None ) if element: defense_message = element.execute_defense_function() responses.append(defense_message) else: logging.info(f"No matching element found for '{element_name}'") ethical_considerations = self.config.get( 'ethical_considerations', "Always act with transparency, fairness, and respect for privacy." ) responses.append(f"**Ethical Considerations:**\n{ethical_considerations}") formatted_response = "\n\n".join(responses) return formatted_response def analyze_sentiment(self, text): sentiment_score = self.sentiment_analyzer.polarity_scores(text) logging.info(f"Sentiment analysis result: {sentiment_score}") return sentiment_score async def fetch_real_time_data(self, source_url): async with aiohttp.ClientSession() as session: async with session.get(source_url) as response: data = await response.json() logging.info(f"Real-time data fetched from {source_url}: {data}") return data async def run_dialog(self, dialog: Dialog, turn_context: TurnContext, accessor: StatePropertyAccessor) -> None: await DialogHelper.run_dialog(dialog, turn_context, accessor) def save_response(self, response): if self.config.get('enable_response_saving', False): save_path = self.config.get('response_save_path', 'responses.txt') try: with open(save_path, 'a', encoding='utf-8') as file: file.write(response + '\n') logging.info(f"Response saved to '{save_path}'.") except Exception as e: logging.error(f"Error saving response to '{save_path}': {e}") def backup_response(self, response): if self.config.get('backup_responses', {}).get('enabled', False): backup_path = self.config['backup_responses'].get('backup_path', 'backup_responses.txt') try: with open(backup_path, 'a', encoding='utf-8') as file: file.write(response + '\n') logging.info(f"Response backed up to '{backup_path}'.") async def collect_user_feedback(self, turn_context: TurnContext): # Collect feedback from the user feedback = turn_context.activity.text logging.info(f"User feedback received: {feedback}") # Process feedback for continuous learning self.process_feedback(feedback) def process_feedback(self, feedback): # Implement feedback processing logic logging.info(f"Processing feedback: {feedback}") # Example: Adjust response generation based on feedback # This can be expanded with more sophisticated learning algorithms def add_new_perspective(self, perspective_name, perspective_class): if perspective_name.lower() not in [p.__class__.__name__.lower() for p in self.perspectives]: self.perspectives.append(perspective_class(self.config)) logging.info(f"New perspective '{perspective_name}' added.") else: logging.warning(f"Perspective '{perspective_name}' already exists.") def handle_voice_input(self): recognizer = sr.Recognizer() with sr.Microphone() as source: print("Listening...") audio = recognizer.listen(source) try: text = recognizer.recognize_google(audio) print(f"Voice input recognized: {text}") return text except sr.UnknownValueError: print("Google Speech Recognition could not understand audio") return None except sr.RequestError as e: print(f"Could not request results from Google Speech Recognition service; {e}") return None def handle_image_input(self, image_path): try: image = Image.open(image_path) print(f"Image input processed: {image_path}") return image except Exception as e: print(f"Error processing image input: {e}") return None # Example usage if __name__ == "__main__": config = load_json_config('config.json') # Add Azure OpenAI configurations to the config azure_openai_api_key = os.getenv('AZURE_OPENAI_API_KEY') azure_openai_endpoint = os.getenv('AZURE_OPENAI_ENDPOINT') # Encrypt sensitive data encryption_key = Fernet.generate_key() encrypted_api_key = encrypt_sensitive_data(azure_openai_api_key, encryption_key) encrypted_endpoint = encrypt_sensitive_data(azure_openai_endpoint, encryption_key) # Add encrypted data to config config['azure_openai_api_key'] = encrypted_api_key config['azure_openai_endpoint'] = encrypted_endpoint setup_logging(config) universal_reasoning = UniversalReasoning(config) question = "Tell me about Hydrogen and its defense mechanisms." response = asyncio.run(universal_reasoning.generate_response(question)) print(response) if response: universal_reasoning.save_response(response) universal_reasoning.backup_response(response) # Decrypt and destroy sensitive data decrypted_api_key = decrypt_sensitive_data(encrypted_api_key, encryption_key) decrypted_endpoint = decrypt_sensitive_data(encrypted_endpoint, encryption_key) destroy_sensitive_data(decrypted_api_key) destroy_sensitive_data(decrypted_endpoint) # Handle voice input voice_input = universal_reasoning.handle_voice_input() if voice_input: response = asyncio.run(universal_reasoning.generate_response(voice_input)) print(response) # Handle image input image_input = universal_reasoning.handle_image_input("path_to_image.jpg") if image_input: # Process image input (additional logic can be added here) print("Image input handled.") |