Spaces:
Build error
Build error
import os | |
import logging | |
import random | |
from botbuilder.core import TurnContext, MessageFactory | |
from botbuilder.schema import Activity, ActivityTypes, EndOfConversationCodes | |
from tenacity import retry, wait_random_exponential, stop_after_attempt | |
import importlib | |
from sentiment_analysis import analyze_sentiment_vader | |
from config import load_and_validate_config, setup_logging | |
from universal_reasoning import UniversalReasoning | |
from dotenv import load_dotenv | |
import json | |
from chat import azure_chat_completion_request # Import the function from chat.py | |
from database import DatabaseConnection # Import the database connection | |
# Load environment variables from .env file | |
load_dotenv() | |
class MyBot: | |
def __init__(self, conversation_state, user_state, dialog, universal_reasoning): | |
self.conversation_state = conversation_state | |
self.user_state = user_state | |
self.dialog = dialog | |
self.universal_reasoning = universal_reasoning | |
self.context = {} | |
self.feedback = [] | |
config = load_and_validate_config('config.json', 'config_schema.json') | |
# Add Azure OpenAI and LUIS configurations to the config | |
config['azure_openai_api_key'] = os.getenv('AZURE_OPENAI_API_KEY') | |
config['azure_openai_endpoint'] = os.getenv('AZURE_OPENAI_ENDPOINT') | |
config['luis_endpoint'] = os.getenv('LUIS_ENDPOINT') | |
config['luis_api_version'] = os.getenv('LUIS_API_VERSION') | |
config['luis_api_key'] = os.getenv('LUIS_API_KEY') | |
setup_logging(config) | |
async def enhance_context_awareness(self, user_id: str, text: str) -> None: | |
"""Enhance context awareness by analyzing the user's environment, activities, and emotional state.""" | |
sentiment = analyze_sentiment_vader(text) | |
if user_id not in self.context: | |
self.context[user_id] = [] | |
self.context[user_id].append({"text": text, "sentiment": sentiment}) | |
async def proactive_learning(self, user_id: str, feedback: str) -> None: | |
"""Encourage proactive learning by seeking feedback and exploring new topics.""" | |
if user_id not in self.context: | |
self.context[user_id] = [] | |
self.context[user_id].append({"feedback": feedback}) | |
self.feedback.append({"user_id": user_id, "feedback": feedback}) | |
async def ethical_decision_making(self, user_id: str, decision: str) -> None: | |
"""Integrate ethical principles into decision-making processes.""" | |
ethical_decision = f"Considering ethical principles, the decision is: {decision}" | |
if user_id not in self.context: | |
self.context[user_id] = [] | |
self.context[user_id].append({"ethical_decision": ethical_decision}) | |
async def emotional_intelligence(self, user_id: str, text: str) -> str: | |
"""Develop emotional intelligence by recognizing and responding to user emotions.""" | |
sentiment = analyze_sentiment_vader(text) | |
response = self.generate_emotional_response(sentiment, text) | |
if user_id not in self.context: | |
self.context[user_id] = [] | |
self.context[user_id].append({"emotional_response": response}) | |
return response | |
def generate_emotional_response(self, sentiment: dict, text: str) -> str: | |
"""Generate an empathetic response based on the sentiment analysis.""" | |
if sentiment['compound'] >= 0.05: | |
return "I'm glad to hear that! π How can I assist you further?" | |
elif sentiment['compound'] <= -0.05: | |
return "I'm sorry to hear that. π’ Is there anything I can do to help?" | |
else: | |
return "I understand. How can I assist you further?" | |
async def transparency_and_explainability(self, user_id: str, decision: str) -> str: | |
"""Enable transparency by explaining the reasoning behind decisions.""" | |
explanation = f"The decision was made based on the following context: {self.context[user_id]}" | |
if user_id not in self.context: | |
self.context[user_id] = [] | |
self.context[user_id].append({"explanation": explanation}) | |
return explanation | |
async def on_message_activity(self, turn_context: TurnContext) -> None: | |
"""Handles incoming messages and generates responses.""" | |
user_id = turn_context.activity.from_property.id | |
if user_id not in self.context: | |
self.context[user_id] = [] | |
try: | |
if "end" in turn_context.activity.text.lower() or "stop" in turn_context.activity.text.lower(): | |
await end_conversation(turn_context) | |
self.context.pop(user_id, None) | |
else: | |
self.context[user_id].append(turn_context.activity.text) | |
response = await self.generate_response(turn_context.activity.text, user_id) | |
await turn_context.send_activity(MessageFactory.text(response)) | |
await self.request_feedback(turn_context, user_id) | |
# Example database operation | |
with DatabaseConnection() as conn: | |
if conn: | |
cursor = conn.cursor() | |
cursor.execute("INSERT INTO UserMessages (UserId, Message) VALUES (?, ?)", user_id, turn_context.activity.text) | |
conn.commit() | |
except Exception as e: | |
await handle_error(turn_context, e) | |
async def generate_response(self, text: str, user_id: str) -> str: | |
"""Generates a response using Azure OpenAI's API, Universal Reasoning, and various perspectives.""" | |
try: | |
logging.info(f"Generating response for user_id: {user_id} with text: {text}") | |
# Generate responses from different perspectives | |
responses = [] | |
for perspective in self.perspectives.values(): | |
try: | |
response = await perspective.generate_response(text) | |
responses.append(response) | |
except Exception as e: | |
logging.error(f"Error generating response from {perspective.__class__.__name__}: {e}") | |
# Combine responses | |
combined_response = "\n".join(responses) | |
logging.info(f"Combined response: {combined_response}") | |
return combined_response | |
except Exception as e: | |
logging.error(f"Error generating response: {e}") | |
return "Sorry, I couldn't generate a response at this time." | |
async def request_feedback(self, turn_context: TurnContext, user_id: str) -> None: | |
"""Request feedback from the user about the bot's response.""" | |
feedback_prompt = "How would you rate my response? (good/neutral/bad)" | |
await turn_context.send_activity(MessageFactory.text(feedback_prompt)) | |
async def handle_feedback(self, turn_context: TurnContext) -> None: | |
"""Handle user feedback and store it for future analysis.""" | |
user_id = turn_context.activity.from_property.id | |
feedback = turn_context.activity.text.lower() | |
if feedback in ["good", "neutral", "bad"]: | |
self.feedback.append({"user_id": user_id, "feedback": feedback}) | |
await turn_context.send_activity(MessageFactory.text("Thank you for your feedback!")) | |
else: | |
await turn_context.send_activity(MessageFactory.text("Please provide feedback as 'good', 'neutral', or 'bad'.")) | |
async def end_conversation(turn_context: TurnContext) -> None: | |
"""Ends the conversation with the user.""" | |
await turn_context.send_activity( | |
MessageFactory.text("Ending conversation from the skill...") | |
) | |
end_of_conversation = Activity(type=ActivityTypes.end_of_conversation) | |
end_of_conversation.code = EndOfConversationCodes.completed_successfully | |
await turn_context.send_activity(end_of_conversation) | |
async def handle_error(turn_context: TurnContext, error: Exception) -> None: | |
"""Handles errors by logging them and notifying the user.""" | |
logging.error(f"An error occurred: {error}") | |
await turn_context.send_activity( | |
MessageFactory.text("An error occurred. Please try again later.") | |
) | |
def show_privacy_consent() -> bool: | |
"""Display a pop-up window to obtain user consent for data collection and privacy.""" | |
import tkinter as tk | |
def on_accept(): | |
user_consent.set(True) | |
root.destroy() | |
def on_decline(): | |
user_consent.set(False) | |
root.destroy() | |
root = tk.Tk() | |
root.title("Data Permission and Privacy") | |
message = ("We value your privacy. By using this application, you consent to the collection and use of your data " | |
"as described in our privacy policy. Do you agree to proceed?") | |
label = tk.Label(root, text=message, wraplength=400, justify="left") | |
label.pack(padx=20, pady=20) | |
button_frame = tk.Frame(root) | |
button_frame.pack(pady=10) | |
accept_button = tk.Button(button_frame, text="Accept", command=on_accept) | |
accept_button.pack(side="left", padx=10) | |
decline_button = tk.Button(button_frame, text="Decline", command=on_decline) | |
decline_button.pack(side="right", padx=10) | |
user_consent = tk.BooleanVar() | |
root.mainloop() | |
return user_consent.get() | |
# Example usage of MyBot class | |
bot = MyBot() | |
# Functions based on JSON configuration | |
def newton_thoughts(question: str) -> str: | |
"""Apply Newton's laws to the given question.""" | |
return apply_newtons_laws(question) | |
def apply_newtons_laws(question: str) -> str: | |
"""Apply Newton's laws to the given question.""" | |
if not question: | |
return 'No question to think about.' | |
complexity = len(question) | |
force = mass_of_thought(question) * acceleration_of_thought(complexity) | |
return f'Thought force: {force}' | |
def mass_of_thought(question: str) -> int: | |
"""Calculate the mass of thought based on the question length.""" | |
return len(question) | |
def acceleration_of_thought(complexity: int) -> float: | |
"""Calculate the acceleration of thought based on the complexity.""" | |
return complexity / 2 | |
def davinci_insights(question: str) -> str: | |
"""Generate insights like Da Vinci for the given question.""" | |
return think_like_davinci(question) | |
def think_like_davinci(question: str) -> str: | |
"""Generate insights like Da Vinci for the given question.""" | |
perspectives = [ | |
f"What if we view '{question}' from the perspective of the stars?", | |
f"Consider '{question}' as if it's a masterpiece of the universe.", | |
f"Reflect on '{question}' through the lens of nature's design." | |
] | |
return random.choice(perspectives) | |
def human_intuition(question: str) -> str: | |
"""Provide human intuition for the given question.""" | |
intuition = [ | |
"How does this question make you feel?", | |
"What emotional connection do you have with this topic?", | |
"What does your gut instinct tell you about this?" | |
] | |
return random.choice(intuition) | |
def neural_network_thinking(question: str) -> str: | |
"""Apply neural network thinking to the given question.""" | |
neural_perspectives = [ | |
f"Process '{question}' through a multi-layered neural network.", | |
f"Apply deep learning to uncover hidden insights about '{question}'.", | |
f"Use machine learning to predict patterns in '{question}'." | |
] | |
return random.choice(neural_perspectives) | |
def quantum_computing_thinking(question: str) -> str: | |
"""Apply quantum computing principles to the given question.""" | |
quantum_perspectives = [ | |
f"Consider '{question}' using quantum superposition principles.", | |
f"Apply quantum entanglement to find connections in '{question}'.", | |
f"Utilize quantum computing to solve '{question}' more efficiently." | |
] | |
return random.choice(quantum_perspectives) | |
def resilient_kindness(question: str) -> str: | |
"""Provide perspectives of resilient kindness.""" | |
kindness_perspectives = [ | |
"Despite losing everything, seeing life as a chance to grow.", | |
"Finding strength in kindness after facing life's hardest trials.", | |
"Embracing every challenge as an opportunity for growth and compassion." | |
] | |
return random.choice(kindness_perspectives) | |
def identify_and_refute_fallacies(argument: str) -> str: | |
"""Identify and refute common logical fallacies in the argument.""" | |
refutations = [ | |
"This is an ad hominem fallacy. Let's focus on the argument itself rather than attacking the person.", | |
"This is a straw man fallacy. The argument is being misrepresented.", | |
"This is a false dilemma fallacy. There are more options than presented.", | |
"This is a slippery slope fallacy. The conclusion does not necessarily follow from the premise.", | |
"This is circular reasoning. The argument's conclusion is used as a premise.", | |
"This is a hasty generalization. The conclusion is based on insufficient evidence.", | |
"This is a red herring fallacy. The argument is being diverted to an irrelevant topic.", | |
"This is a post hoc ergo propter hoc fallacy. Correlation does not imply causation.", | |
"This is an appeal to authority fallacy. The argument relies on the opinion of an authority figure.", | |
"This is a bandwagon fallacy. The argument assumes something is true because many people believe it.", | |
"This is a false equivalence fallacy. The argument equates two things that are not equivalent." | |
] | |
return random.choice(refutations) | |
def universal_reasoning(question: str) -> str: | |
"""Generate a comprehensive response using various reasoning methods.""" | |
responses = [ | |
newton_thoughts(question), | |
davinci_insights(question), | |
human_intuition(question), | |
neural_network_thinking(question), | |
quantum_computing_thinking(question), | |
resilient_kindness(question), | |
identify_and_refute_fallacies(question) | |
] | |
return "\n".join(responses) | |
def chat_completion_request(messages: list, deployment_id: str) -> str: | |
"""Make a chat completion request to Azure OpenAI.""" | |
try: | |
import openai | |
response = openai.ChatCompletion.create( | |
engine=deployment_id, # Use the deployment name of your Azure OpenAI model | |
messages=messages | |
) | |
return response.choices[0].message.content.strip() | |
except openai.error.OpenAIError as e: | |
logging.error("Unable to generate ChatCompletion response") | |
logging.error(f"Exception: {e}") | |
return f"Error: {e}" | |
def get_internet_answer(question: str, deployment_id: str) -> str: | |
"""Get an answer using Azure OpenAI's chat completion request.""" | |
messages = [ | |
{"role": "system", "content": "You are a helpful assistant."}, | |
{"role": "user", "content": question} | |
] | |
return chat_completion_request(messages, deployment_id=deployment_id) | |
def reflect_on_decisions() -> str: | |
"""Regularly reflect on your decisions and processes used.""" | |
reflection_message = ( | |
"Regularly reflecting on your decisions, the processes you used, the information you considered, " | |
"and the perspectives you may have missed. Reflection is a cornerstone of learning from experience." | |
) | |
return reflection_message | |
def process_questions_from_json(file_path: str): | |
"""Process questions from a JSON file and call the appropriate functions.""" | |
with open(file_path, 'r') as file: | |
questions_data = json.load(file) | |
for question_data in questions_data: | |
question = question_data['question'] | |
print(f"Question: {question}") | |
for function_data in question_data['functions']: | |
function_name = function_data['name'] | |
function_description = function_data['description'] | |
function_parameters = function_data['parameters'] | |
print(f"Function: {function_name}") | |
print(f"Description: {function_description}") | |
# Call the function dynamically | |
if function_name in globals(): | |
function = globals()[function_name] | |
response = function(**function_parameters) | |
print(f"Response: {response}") | |
else: | |
print(f"Function {function_name} not found.") | |
if __name__ == "__main__": | |
if show_privacy_consent(): | |
process_questions_from_json('questions.json') | |
question = "What is the meaning of life?" | |
deployment_id = "your-deployment-name" # Replace with your Azure deployment name | |
print("Newton's Thoughts:", newton_thoughts(question)) | |
print("Da Vinci's Insights:", davinci_insights(question)) | |
print("Human Intuition:", human_intuition(question)) | |
print("Neural Network Thinking:", neural_network_thinking(question)) | |
print("Quantum Computing Thinking:", quantum_computing_thinking(question)) | |
print("Resilient Kindness:", resilient_kindness(question)) | |
print("Universal Reasoning:", universal_reasoning(question)) | |
print("Internet Answer:", get_internet_answer(question, deployment_id)) | |
else: | |
print("User did not consent to data collection. Exiting application.") | |
print(reflect_on_decisions()) | |