import faicons as fa import plotly.express as px # Load data and compute static values from shared import app_dir, bot_data from shinywidgets import render_plotly from shiny import reactive, render from shiny.express import input, ui data_rng = (min(bot_data.interactions), max(bot_data.interactions)) # Add page title and sidebar ui.page_opts(title="MyBot Interactions", fillable=True) with ui.sidebar(open="desktop"): ui.input_slider( "interactions", "Number of Interactions", min=data_rng[0], max=data_rng[1], value=data_rng, ) ui.input_checkbox_group( "time_period", "Time Period", ["Morning", "Afternoon", "Evening", "Night"], selected=["Morning", "Afternoon", "Evening", "Night"], inline=True, ) ui.input_action_button("reset", "Reset filter") # Add main content ICONS = { "user": fa.icon_svg("user", "regular"), "chat": fa.icon_svg("comments"), "interaction": fa.icon_svg("exchange-alt"), "ellipsis": fa.icon_svg("ellipsis"), } with ui.layout_columns(fill=False): with ui.value_box(showcase=ICONS["user"]): "Total Users" @render.express def total_users(): bot_data_filtered().shape[0] with ui.value_box(showcase=ICONS["chat"]): "Average Interactions per User" @render.express def average_interactions(): d = bot_data_filtered() if d.shape[0] > 0: avg_interactions = d.interactions.mean() f"{avg_interactions:.1f}" with ui.value_box(showcase=ICONS["interaction"]): "Total Interactions" @render.express def total_interactions(): d = bot_data_filtered() if d.shape[0] > 0: total_interactions = d.interactions.sum() f"{total_interactions}" with ui.layout_columns(col_widths=[6, 6, 12]): with ui.card(full_screen=True): ui.card_header("Interaction Data") @render.data_frame def table(): return render.DataGrid(bot_data_filtered()) with ui.card(full_screen=True): with ui.card_header(class_="d-flex justify-content-between align-items-center"): "Interactions Over Time" with ui.popover(title="Add a color variable", placement="top"): ICONS["ellipsis"] ui.input_radio_buttons( "scatter_color", None, ["none", "user_type", "time_period"], inline=True, ) @render_plotly def scatterplot(): color = input.scatter_color() return px.scatter( bot_data_filtered(), x="time", y="interactions", color=None if color == "none" else color, trendline="lowess", ) with ui.card(full_screen=True): with ui.card_header(class_="d-flex justify-content-between align-items-center"): "Interaction Types" with ui.popover(title="Add a color variable"): ICONS["ellipsis"] ui.input_radio_buttons( "interaction_type", "Split by:", ["user_type", "time_period"], selected="user_type", inline=True, ) @render_plotly def interaction_types(): from ridgeplot import ridgeplot dat = bot_data_filtered() yvar = input.interaction_type() uvals = dat[yvar].unique() samples = [[dat.interactions[dat[yvar] == val]] for val in uvals] plt = ridgeplot( samples=samples, labels=uvals, bandwidth=0.01, colorscale="viridis", colormode="row-index", ) plt.update_layout( legend=dict( orientation="h", yanchor="bottom", y=1.02, xanchor="center", x=0.5 ) ) return plt ui.include_css(app_dir / "styles.css") # -------------------------------------------------------- # Reactive calculations and effects # -------------------------------------------------------- @reactive.calc def bot_data_filtered(): interactions = input.interactions() idx1 = bot_data.interactions.between(interactions[0], interactions[1]) idx2 = bot_data.time_period.isin(input.time_period()) return bot_data[idx1 & idx2] @reactive.effect @reactive.event(input.reset) def _(): ui.update_slider("interactions", value=data_rng) ui.update_checkbox_group("time_period", selected=["Morning", "Afternoon", "Evening", "Night"])