File size: 15,985 Bytes
1ff6afc 76116a7 edaa304 1ff6afc e938e55 1ff6afc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 |
import gradio as gr
import pandas as pd
import logging
from pathlib import Path
from docx import Document
from typing import Optional, List
from dataclasses import dataclass
from dotenv import load_dotenv
from src.archive.sample_inputs import INTERVIEW_QUESTION, JOB_REQUIREMENTS
from src.configs.database.firebase import write_user_data, read_all_users
from src.llm.llm import get_llm
from src.service.emotion_recognition import EmotionRecognition
from src.service.resume_parser import ResumeParser
from src.utils.utils import (
parse_yaml_string,
extract_audio,
audio2text,
sample_frames,
)
from src.template.grading_prompt import (
GRADE_RESPONSE_PROMPT,
RANKING_AND_FEEDBACK_PROMPT,
)
load_dotenv()
# ENVIRONMENT = os.getenv("ENVIRONMENT", "local")
# Define base paths dynamically
# if ENVIRONMENT == "local":
# BASE_DIR = Path(__file__).resolve().parent.parent.parent.parent
# else: # Assume hosted on Hugging Face Spaces
BASE_DIR = Path(".").resolve()
LLM_CONFIG_FILE = BASE_DIR / "src/configs/llm/openai-gpt-3.5-turbo.yaml"
RESUME_PARSER_CONFIG_FILE = BASE_DIR / "src/configs/parser/llamaparse_en.yaml"
OUTPUT_AUDIO_FILE_EMPTY = BASE_DIR / "src/output/audio_output.wav"
OUTPUT_REPORT_FILE_EMPTY = BASE_DIR / "src/output/report.docx"
@dataclass
class ProcessingResult:
candidate_name: Optional[str] = None
candidate_score: Optional[int] = None
candidate_feedbacks: Optional[List[str]] = None
feedback_md: Optional[str] = None
interview_question: Optional[str] = None
job_requirements: Optional[str] = None
error_message: Optional[str] = None
class GradioInterface:
VALID_VIDEO_EXTENSIONS = {".mp4", ".avi", ".mkv"}
VALID_RESUME_EXTENSIONS = {".pdf"}
def __init__(self):
self.parser = None
self.llm = None
self.logger = None
self.candidate_feedback = pd.DataFrame(columns=["Name", "Score", "Feedback"])
self.setup_logging()
self.initialize_services()
def setup_logging(self):
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
)
self.logger = logging.getLogger(__name__)
def initialize_services(self):
try:
self.llm = get_llm(str(LLM_CONFIG_FILE))
self.parser = ResumeParser(str(RESUME_PARSER_CONFIG_FILE))
except Exception as e:
self.logger.error(f"Failed to initialize services: {str(e)}")
raise
def validate_inputs(
self,
video_path: Optional[str],
resume_path: Optional[str],
interview_questions: Optional[str],
job_requirements: Optional[str],
) -> Optional[str]:
if not video_path:
return "Please upload an interview video."
if not resume_path:
return "Please upload a resume (PDF)."
if not interview_questions:
return "Please provide interview questions."
if not job_requirements:
return "Please provide job requirements."
if not self._validate_file_format(video_path, self.VALID_VIDEO_EXTENSIONS):
return "Invalid video format."
if not self._validate_file_format(resume_path, self.VALID_RESUME_EXTENSIONS):
return "Please submit resume in PDF format."
return None
def _validate_file_format(self, file_path: str, valid_extensions: set) -> bool:
return isinstance(file_path, str) and any(
file_path.lower().endswith(ext) for ext in valid_extensions
)
def process_video(self, video_path: str) -> Optional[str]:
OUTPUT_AUDIO_FILE = extract_audio(video_path, str(OUTPUT_AUDIO_FILE_EMPTY))
audio_text = audio2text(OUTPUT_AUDIO_FILE)
return audio_text
def analyze_emotions(self, video_path: str) -> Optional[str]:
frames = sample_frames(video_path, sample_rate=24)
emotions = EmotionRecognition.detect_face_emotions(frames)
emotions_dict = EmotionRecognition.process_emotions(emotions)
conf_score = emotions_dict["conf"]
return conf_score
def process_resume(self, resume_path: str) -> Optional[str]:
resume_md = self.parser.parse_resume_to_markdown(resume_path)
return resume_md
def format_feedback_to_markdown(self, feedback_df: pd.DataFrame) -> str:
if feedback_df.empty:
return "No feedback available."
name = feedback_df["Name"].iloc[0]
score = feedback_df["Score"].iloc[0]
# Start with header
markdown_text = f"""
# Candidate Assessment Report π
## Candidate Name β¨
{name}
## Candidate Overall Score π―
{score}/100
## Detailed Feedback π οΈ
"""
for idx, row in feedback_df.iterrows():
markdown_text += f"- {row['Feedback']}\n\n"
return markdown_text
def get_feedback(
self,
itv_question: str,
job_requirements: str,
conf_score: str,
audio_text: str,
resume_md: str,
) -> pd.DataFrame:
formatted_grading_prompt = GRADE_RESPONSE_PROMPT.format(
interview_question=itv_question,
conf_score=conf_score,
response_text=audio_text,
)
grade = self.llm.complete(formatted_grading_prompt)
formatted_ranking_prompt = RANKING_AND_FEEDBACK_PROMPT.format(
job_requirements=job_requirements,
interview_feedback=grade,
resume_text=resume_md,
)
rank_and_feedback = self.llm.complete(formatted_ranking_prompt)
expected_keys = ["name", "score", "feedback"]
rank_and_feedback_dict = parse_yaml_string(
yaml_string=rank_and_feedback, expected_keys=expected_keys, cleanup=True
)
return pd.DataFrame(
{
"Name": rank_and_feedback_dict["name"],
"Score": rank_and_feedback_dict["score"],
"Feedback": rank_and_feedback_dict["feedback"],
}
)
def process_submission(
self,
video_path: str,
resume_path: str,
interview_questions: str,
job_title: str,
job_requirements: str,
) -> ProcessingResult:
try:
# Validate inputs
error_message = self.validate_inputs(
video_path, resume_path, interview_questions, job_requirements
)
if error_message:
return ProcessingResult(error_message=error_message)
# Process inputs
video_transcript = self.process_video(video_path)
emotion_analysis = self.analyze_emotions(video_path)
resume_analysis = self.process_resume(resume_path)
feedback_list = self.get_feedback(
interview_questions,
job_requirements,
emotion_analysis,
video_transcript,
resume_analysis,
)
# Update feedback database
self.candidate_feedback = pd.concat(
[self.candidate_feedback, feedback_list], ignore_index=True
)
# TODO: For testing purposes
# job_title = "LLM Engineer"
# interview_questions = INTERVIEW_QUESTION
# job_requirements = JOB_REQUIREMENTS
# self.candidate_feedback = pd.DataFrame(
# {
# "Name": ["Goh Yi Xian"] * 4,
# "Score": [50, 50, 50, 50],
# "Feedback": [
# "The interviewee's technical skills align partially with the job requirements, showcasing proficiency in deep learning frameworks like PyTorch and TensorFlow. However, there is a lack of experience in training and fine-tuning transformer-based models and working with MLOps tools for deployment.",
# "The educational background meets the criteria with a Bachelor's degree in Computer Science, but the lack of a Ph.D. and limited industry experience may hinder full alignment with the role.",
# "The interview performance indicates a need for improvement in problem-solving skills, confidence, and engagement. The response lacked clarity, relevance, and demonstrated understanding of the key aspects of the job requirements.",
# "Overall, while there are some matching skills and experiences, the interviewee falls short in demonstrating a comprehensive fit for the LLM Engineer position. Further development in technical expertise, problem-solving abilities, and communication skills is recommended.",
# ],
# }
# )
write_user_data(
self.candidate_feedback["Name"].iloc[0],
self.candidate_feedback["Score"].iloc[0],
interview_questions,
job_title,
job_requirements,
self.candidate_feedback["Feedback"].tolist(),
)
feedback_md = self.format_feedback_to_markdown(self.candidate_feedback)
return ProcessingResult(
candidate_name=self.candidate_feedback["Name"].iloc[0],
candidate_score=self.candidate_feedback["Score"].iloc[0],
candidate_feedbacks=self.candidate_feedback["Feedback"].tolist(),
feedback_md=feedback_md,
interview_question=interview_questions,
job_requirements=job_requirements,
)
except Exception as e:
self.logger.error(f"Error in process_submission: {str(e)}")
return ProcessingResult(
error_message=f"An error occurred during processing: {str(e)}"
)
def save_report(
self,
candidate_name,
candidate_score,
candidate_feedback,
interview_question,
job_requirements,
) -> Optional[str]:
try:
if self.candidate_feedback.empty:
return None
doc = Document()
doc.add_heading(f"Interview Analysis Report - {candidate_name}", 0)
doc.add_heading("Interview Questions", 1)
doc.add_paragraph(interview_question)
doc.add_heading("Job Requirements", 1)
doc.add_paragraph(job_requirements)
doc.add_heading("Overall Score", 1)
paragraph = doc.add_paragraph()
paragraph.add_run(f"{candidate_score}/100").bold = True
doc.add_heading("Detailed Feedback", 1)
for feedback in candidate_feedback:
doc.add_paragraph(f"β’ {feedback}")
doc.save(str(OUTPUT_REPORT_FILE_EMPTY))
return str(OUTPUT_REPORT_FILE_EMPTY)
except Exception as e:
self.logger.error(f"Error saving report: {str(e)}")
return None
def create_interface(self) -> gr.Blocks:
theme = gr.themes.Ocean(
primary_hue="pink",
secondary_hue="rose",
font="Chalkboard",
)
with gr.Blocks(title="HR Interview Analysis System", theme=theme) as demo:
gr.Markdown("# HR Interview Analysis System")
with gr.Row():
with gr.Column():
video_input = gr.Video(label="Upload Interview Video", format="mp4")
resume_input = gr.File(
label="Upload Resume (PDF)", file_types=[".pdf"]
)
with gr.Row():
question_input = gr.Textbox(
label="Interview Questions",
lines=5,
placeholder="Enter the interview questions here...",
)
with gr.Row():
job_title_input = gr.Textbox(
label="Job Title",
lines=5,
placeholder="Enter the job title here...",
)
requirements_input = gr.Textbox(
label="Job Requirements",
lines=5,
placeholder="Enter the job requirements here...",
)
submit_button = gr.Button("Analyze Interview", variant="primary")
# Error message display
error_output = gr.Markdown(visible=False)
with gr.Tabs():
with gr.Tab("Analysis Results"):
feedback_output_md = gr.Markdown(
label="Candidate Assessment",
value="No assessment available yet.",
)
save_button = gr.Button("Generate Report", variant="secondary")
report_output = gr.File(label="Download Report")
with gr.Tab("Candidates List"):
candidates_df = gr.Dataframe(
headers=[
"Name",
"Job Title",
"Interview Question",
"Score",
"Feedback",
],
datatype=["str", "str", "str", "int", "str"],
row_count=(0, "dynamic"),
col_count=(5, "fixed"),
value=read_all_users(), # Load initial data
interactive=True,
wrap=True,
)
refresh_button = gr.Button("Refresh Candidates List")
refresh_button.click(
fn=lambda: read_all_users(), # Reload the candidates data
inputs=[],
outputs=[candidates_df],
)
candidate_name_state = gr.State()
candidate_score_state = gr.State()
candidate_feedbacks_state = gr.State()
interview_question_state = gr.State()
job_requirements_state = gr.State()
# Event handlers
submit_button.click(
fn=lambda video, resume, questions, job_title, requirements: (
lambda result: (
result.candidate_name,
result.candidate_score,
result.candidate_feedbacks,
result.feedback_md,
result.interview_question,
result.job_requirements,
result.error_message,
)
)(
self.process_submission(
video, resume, questions, job_title, requirements
)
),
inputs=[
video_input,
resume_input,
question_input,
job_title_input,
requirements_input,
],
outputs=[
candidate_name_state,
candidate_score_state,
candidate_feedbacks_state,
feedback_output_md,
interview_question_state,
job_requirements_state,
error_output,
],
)
save_button.click(
fn=self.save_report,
inputs=[
candidate_name_state,
candidate_score_state,
candidate_feedbacks_state,
interview_question_state,
job_requirements_state,
],
outputs=[report_output],
)
return demo
def launch_app():
app = GradioInterface()
interface = app.create_interface()
interface.launch(server_name="0.0.0.0", server_port=7860, share=True, debug=True)
if __name__ == "__main__":
launch_app()
|