File size: 15,985 Bytes
1ff6afc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76116a7
edaa304
 
 
1ff6afc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e938e55
1ff6afc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
import gradio as gr
import pandas as pd
import logging
from pathlib import Path
from docx import Document
from typing import Optional, List
from dataclasses import dataclass
from dotenv import load_dotenv
from src.archive.sample_inputs import INTERVIEW_QUESTION, JOB_REQUIREMENTS
from src.configs.database.firebase import write_user_data, read_all_users
from src.llm.llm import get_llm
from src.service.emotion_recognition import EmotionRecognition
from src.service.resume_parser import ResumeParser
from src.utils.utils import (
    parse_yaml_string,
    extract_audio,
    audio2text,
    sample_frames,
)
from src.template.grading_prompt import (
    GRADE_RESPONSE_PROMPT,
    RANKING_AND_FEEDBACK_PROMPT,
)

load_dotenv()
# ENVIRONMENT = os.getenv("ENVIRONMENT", "local")

# Define base paths dynamically
# if ENVIRONMENT == "local":
#     BASE_DIR = Path(__file__).resolve().parent.parent.parent.parent
# else:  # Assume hosted on Hugging Face Spaces
BASE_DIR = Path(".").resolve()

LLM_CONFIG_FILE = BASE_DIR / "src/configs/llm/openai-gpt-3.5-turbo.yaml"
RESUME_PARSER_CONFIG_FILE = BASE_DIR / "src/configs/parser/llamaparse_en.yaml"
OUTPUT_AUDIO_FILE_EMPTY = BASE_DIR / "src/output/audio_output.wav"
OUTPUT_REPORT_FILE_EMPTY = BASE_DIR / "src/output/report.docx"


@dataclass
class ProcessingResult:
    candidate_name: Optional[str] = None
    candidate_score: Optional[int] = None
    candidate_feedbacks: Optional[List[str]] = None
    feedback_md: Optional[str] = None
    interview_question: Optional[str] = None
    job_requirements: Optional[str] = None
    error_message: Optional[str] = None


class GradioInterface:
    VALID_VIDEO_EXTENSIONS = {".mp4", ".avi", ".mkv"}
    VALID_RESUME_EXTENSIONS = {".pdf"}

    def __init__(self):
        self.parser = None
        self.llm = None
        self.logger = None
        self.candidate_feedback = pd.DataFrame(columns=["Name", "Score", "Feedback"])
        self.setup_logging()
        self.initialize_services()

    def setup_logging(self):
        logging.basicConfig(
            level=logging.INFO,
            format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
        )
        self.logger = logging.getLogger(__name__)

    def initialize_services(self):
        try:
            self.llm = get_llm(str(LLM_CONFIG_FILE))
            self.parser = ResumeParser(str(RESUME_PARSER_CONFIG_FILE))
        except Exception as e:
            self.logger.error(f"Failed to initialize services: {str(e)}")
            raise

    def validate_inputs(
        self,
        video_path: Optional[str],
        resume_path: Optional[str],
        interview_questions: Optional[str],
        job_requirements: Optional[str],
    ) -> Optional[str]:
        if not video_path:
            return "Please upload an interview video."
        if not resume_path:
            return "Please upload a resume (PDF)."
        if not interview_questions:
            return "Please provide interview questions."
        if not job_requirements:
            return "Please provide job requirements."
        if not self._validate_file_format(video_path, self.VALID_VIDEO_EXTENSIONS):
            return "Invalid video format."
        if not self._validate_file_format(resume_path, self.VALID_RESUME_EXTENSIONS):
            return "Please submit resume in PDF format."
        return None

    def _validate_file_format(self, file_path: str, valid_extensions: set) -> bool:
        return isinstance(file_path, str) and any(
            file_path.lower().endswith(ext) for ext in valid_extensions
        )

    def process_video(self, video_path: str) -> Optional[str]:
        OUTPUT_AUDIO_FILE = extract_audio(video_path, str(OUTPUT_AUDIO_FILE_EMPTY))
        audio_text = audio2text(OUTPUT_AUDIO_FILE)
        return audio_text

    def analyze_emotions(self, video_path: str) -> Optional[str]:
        frames = sample_frames(video_path, sample_rate=24)
        emotions = EmotionRecognition.detect_face_emotions(frames)
        emotions_dict = EmotionRecognition.process_emotions(emotions)
        conf_score = emotions_dict["conf"]
        return conf_score

    def process_resume(self, resume_path: str) -> Optional[str]:
        resume_md = self.parser.parse_resume_to_markdown(resume_path)
        return resume_md

    def format_feedback_to_markdown(self, feedback_df: pd.DataFrame) -> str:
        if feedback_df.empty:
            return "No feedback available."

        name = feedback_df["Name"].iloc[0]
        score = feedback_df["Score"].iloc[0]

        # Start with header
        markdown_text = f"""
# Candidate Assessment Report πŸ“

## Candidate Name ✨
{name}

## Candidate Overall Score  🎯
{score}/100

## Detailed Feedback  πŸ› οΈ
"""

        for idx, row in feedback_df.iterrows():
            markdown_text += f"- {row['Feedback']}\n\n"

        return markdown_text

    def get_feedback(
        self,
        itv_question: str,
        job_requirements: str,
        conf_score: str,
        audio_text: str,
        resume_md: str,
    ) -> pd.DataFrame:

        formatted_grading_prompt = GRADE_RESPONSE_PROMPT.format(
            interview_question=itv_question,
            conf_score=conf_score,
            response_text=audio_text,
        )

        grade = self.llm.complete(formatted_grading_prompt)

        formatted_ranking_prompt = RANKING_AND_FEEDBACK_PROMPT.format(
            job_requirements=job_requirements,
            interview_feedback=grade,
            resume_text=resume_md,
        )
        rank_and_feedback = self.llm.complete(formatted_ranking_prompt)

        expected_keys = ["name", "score", "feedback"]
        rank_and_feedback_dict = parse_yaml_string(
            yaml_string=rank_and_feedback, expected_keys=expected_keys, cleanup=True
        )

        return pd.DataFrame(
            {
                "Name": rank_and_feedback_dict["name"],
                "Score": rank_and_feedback_dict["score"],
                "Feedback": rank_and_feedback_dict["feedback"],
            }
        )

    def process_submission(
        self,
        video_path: str,
        resume_path: str,
        interview_questions: str,
        job_title: str,
        job_requirements: str,
    ) -> ProcessingResult:
        try:
            # Validate inputs
            error_message = self.validate_inputs(
                video_path, resume_path, interview_questions, job_requirements
            )
            if error_message:
                return ProcessingResult(error_message=error_message)

            # Process inputs
            video_transcript = self.process_video(video_path)
            emotion_analysis = self.analyze_emotions(video_path)
            resume_analysis = self.process_resume(resume_path)

            feedback_list = self.get_feedback(
                interview_questions,
                job_requirements,
                emotion_analysis,
                video_transcript,
                resume_analysis,
            )

            # Update feedback database
            self.candidate_feedback = pd.concat(
                [self.candidate_feedback, feedback_list], ignore_index=True
            )

            # TODO: For testing purposes
            # job_title = "LLM Engineer"
            # interview_questions = INTERVIEW_QUESTION
            # job_requirements = JOB_REQUIREMENTS
            # self.candidate_feedback = pd.DataFrame(
            #     {
            #         "Name": ["Goh Yi Xian"] * 4,
            #         "Score": [50, 50, 50, 50],
            #         "Feedback": [
            #             "The interviewee's technical skills align partially with the job requirements, showcasing proficiency in deep learning frameworks like PyTorch and TensorFlow. However, there is a lack of experience in training and fine-tuning transformer-based models and working with MLOps tools for deployment.",
            #             "The educational background meets the criteria with a Bachelor's degree in Computer Science, but the lack of a Ph.D. and limited industry experience may hinder full alignment with the role.",
            #             "The interview performance indicates a need for improvement in problem-solving skills, confidence, and engagement. The response lacked clarity, relevance, and demonstrated understanding of the key aspects of the job requirements.",
            #             "Overall, while there are some matching skills and experiences, the interviewee falls short in demonstrating a comprehensive fit for the LLM Engineer position. Further development in technical expertise, problem-solving abilities, and communication skills is recommended.",
            #         ],
            #     }
            # )

            write_user_data(
                self.candidate_feedback["Name"].iloc[0],
                self.candidate_feedback["Score"].iloc[0],
                interview_questions,
                job_title,
                job_requirements,
                self.candidate_feedback["Feedback"].tolist(),
            )

            feedback_md = self.format_feedback_to_markdown(self.candidate_feedback)

            return ProcessingResult(
                candidate_name=self.candidate_feedback["Name"].iloc[0],
                candidate_score=self.candidate_feedback["Score"].iloc[0],
                candidate_feedbacks=self.candidate_feedback["Feedback"].tolist(),
                feedback_md=feedback_md,
                interview_question=interview_questions,
                job_requirements=job_requirements,
            )

        except Exception as e:
            self.logger.error(f"Error in process_submission: {str(e)}")
            return ProcessingResult(
                error_message=f"An error occurred during processing: {str(e)}"
            )

    def save_report(
        self,
        candidate_name,
        candidate_score,
        candidate_feedback,
        interview_question,
        job_requirements,
    ) -> Optional[str]:
        try:
            if self.candidate_feedback.empty:
                return None

            doc = Document()
            doc.add_heading(f"Interview Analysis Report - {candidate_name}", 0)
            doc.add_heading("Interview Questions", 1)
            doc.add_paragraph(interview_question)
            doc.add_heading("Job Requirements", 1)
            doc.add_paragraph(job_requirements)
            doc.add_heading("Overall Score", 1)
            paragraph = doc.add_paragraph()
            paragraph.add_run(f"{candidate_score}/100").bold = True
            doc.add_heading("Detailed Feedback", 1)

            for feedback in candidate_feedback:
                doc.add_paragraph(f"β€’ {feedback}")

            doc.save(str(OUTPUT_REPORT_FILE_EMPTY))
            return str(OUTPUT_REPORT_FILE_EMPTY)

        except Exception as e:
            self.logger.error(f"Error saving report: {str(e)}")
            return None

    def create_interface(self) -> gr.Blocks:

        theme = gr.themes.Ocean(
            primary_hue="pink",
            secondary_hue="rose",
            font="Chalkboard",
        )

        with gr.Blocks(title="HR Interview Analysis System", theme=theme) as demo:
            gr.Markdown("# HR Interview Analysis System")

            with gr.Row():
                with gr.Column():
                    video_input = gr.Video(label="Upload Interview Video", format="mp4")
                    resume_input = gr.File(
                        label="Upload Resume (PDF)", file_types=[".pdf"]
                    )

            with gr.Row():
                question_input = gr.Textbox(
                    label="Interview Questions",
                    lines=5,
                    placeholder="Enter the interview questions here...",
                )

            with gr.Row():
                job_title_input = gr.Textbox(
                    label="Job Title",
                    lines=5,
                    placeholder="Enter the job title here...",
                )
                requirements_input = gr.Textbox(
                    label="Job Requirements",
                    lines=5,
                    placeholder="Enter the job requirements here...",
                )

            submit_button = gr.Button("Analyze Interview", variant="primary")

            # Error message display
            error_output = gr.Markdown(visible=False)

            with gr.Tabs():
                with gr.Tab("Analysis Results"):
                    feedback_output_md = gr.Markdown(
                        label="Candidate Assessment",
                        value="No assessment available yet.",
                    )

                    save_button = gr.Button("Generate Report", variant="secondary")
                    report_output = gr.File(label="Download Report")

                with gr.Tab("Candidates List"):
                    candidates_df = gr.Dataframe(
                        headers=[
                            "Name",
                            "Job Title",
                            "Interview Question",
                            "Score",
                            "Feedback",
                        ],
                        datatype=["str", "str", "str", "int", "str"],
                        row_count=(0, "dynamic"),
                        col_count=(5, "fixed"),
                        value=read_all_users(),  # Load initial data
                        interactive=True,
                        wrap=True,
                    )

                    refresh_button = gr.Button("Refresh Candidates List")

                    refresh_button.click(
                        fn=lambda: read_all_users(),  # Reload the candidates data
                        inputs=[],
                        outputs=[candidates_df],
                    )

            candidate_name_state = gr.State()
            candidate_score_state = gr.State()
            candidate_feedbacks_state = gr.State()
            interview_question_state = gr.State()
            job_requirements_state = gr.State()

            # Event handlers
            submit_button.click(
                fn=lambda video, resume, questions, job_title, requirements: (
                    lambda result: (
                        result.candidate_name,
                        result.candidate_score,
                        result.candidate_feedbacks,
                        result.feedback_md,
                        result.interview_question,
                        result.job_requirements,
                        result.error_message,
                    )
                )(
                    self.process_submission(
                        video, resume, questions, job_title, requirements
                    )
                ),
                inputs=[
                    video_input,
                    resume_input,
                    question_input,
                    job_title_input,
                    requirements_input,
                ],
                outputs=[
                    candidate_name_state,
                    candidate_score_state,
                    candidate_feedbacks_state,
                    feedback_output_md,
                    interview_question_state,
                    job_requirements_state,
                    error_output,
                ],
            )

            save_button.click(
                fn=self.save_report,
                inputs=[
                    candidate_name_state,
                    candidate_score_state,
                    candidate_feedbacks_state,
                    interview_question_state,
                    job_requirements_state,
                ],
                outputs=[report_output],
            )

        return demo


def launch_app():
    app = GradioInterface()
    interface = app.create_interface()
    interface.launch(server_name="0.0.0.0", server_port=7860, share=True, debug=True)


if __name__ == "__main__":
    launch_app()