Rain Poo PIEthonista commited on
Commit
f9c7ceb
·
unverified ·
1 Parent(s): 86e7a38

feat: main processing pipeline (#4)

Browse files

* feat: main processing pipeline

* refactor: Code restructuring

* Resolved CR

* Resolved CR

---------

Co-authored-by: yxxx <[email protected]>

.env.example ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ LLAMA_CLOUD_API_KEY=''
2
+ OPENAI_API_KEY=''
3
+ NVIDIA_API_KEY=''
.gitignore CHANGED
@@ -160,3 +160,6 @@ cython_debug/
160
  # and can be added to the global gitignore or merged into this file. For a more nuclear
161
  # option (not recommended) you can uncomment the following to ignore the entire idea folder.
162
  #.idea/
 
 
 
 
160
  # and can be added to the global gitignore or merged into this file. For a more nuclear
161
  # option (not recommended) you can uncomment the following to ignore the entire idea folder.
162
  #.idea/
163
+
164
+ # Mac cache file
165
+ .DS_Store
ENV_SETUP.md ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Setting Up the Environment
2
+
3
+ <code>conda create -n automated_interview_filtering python=3.10.14</code>
4
+
5
+ <code>pip install -r requirements.txt</code>
6
+
7
+ <code>brew install ffmpeg</code>
8
+
9
+ </br>
10
+
11
+ # Creating a .env file
12
+
13
+ Create a <code>.env</code> file at the same directory level as this <code>ENV_SETUP.md</code> file, following the required field as listed in <code>.env.example</code>. You may visit the following to create free trial accounts and obtain your API keys:
14
+
15
+ - Llamaparse: <a href='https://cloud.llamaindex.ai/login'>https://cloud.llamaindex.ai/login</a>
16
+ - OpenAI: <a href='https://platform.openai.com/playground'>https://platform.openai.com/playground</a>
17
+ - Nvidia NIMs: <a href='https://build.nvidia.com/nvidia'>https://build.nvidia.com/nvidia</a>
18
+
19
+ </br>
20
+
21
+ # Running the Sample Code
22
+
23
+ <code>conda activate automated_interview_filtering</code>
24
+
25
+ <code>python -m src.main_test</code>
26
+
27
+ You can choose to either use NVIDIA-NIMs or OpenAI as the LLM Provider. This can be changed by selecting the YAML config files in <code>src/main_test.py</code>
28
+
29
+ </br>
30
+
31
+ # NOTE
32
+
33
+ <code>src/main_test.py</code> is a sample usage of the backend code. Please refer to <code>src/sample_inputs.py</code> for example of what the required input fields are.
requirements.txt CHANGED
@@ -1,5 +1,22 @@
 
 
1
  gradio>=4.0.0
2
  numpy
3
  pandas
4
  python-dotenv
5
- black==24.10.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # running on python 3.10.14
2
+
3
  gradio>=4.0.0
4
  numpy
5
  pandas
6
  python-dotenv
7
+ black==24.10.0
8
+
9
+ PyYAML==6.0.2
10
+ tf-keras==2.18.0
11
+ deepface==0.0.93
12
+ python-docx==1.1.2
13
+ llama-index==0.12.2
14
+ opencv-python==4.10.0.84
15
+ SpeechRecognition==3.11.0
16
+
17
+ moviepy==2.1.1
18
+ # brew install ffmpeg
19
+
20
+ llama-index-llms-openai==0.3.2
21
+ llama-index-llms-nvidia==0.3.0
22
+ llama-index-llms-openai-like==0.3.0
src/configs/llm/nvidia-llama-3.1-nemotron-70b-instruct.yaml ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ PROVIDER: nvidia
2
+ BASE_URL: https://integrate.api.nvidia.com/v1
3
+ MODEL: nvidia/llama-3.1-nemotron-70b-instruct
4
+ TEMPERATURE: 0
src/configs/llm/openai-gpt-3.5-turbo.yaml ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ PROVIDER: openai
2
+ BASE_URL: default
3
+ MODEL: gpt-3.5-turbo
4
+ TEMPERATURE: 0
src/configs/llm/openai-gpt-4o-mini.yaml ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ PROVIDER: openai
2
+ BASE_URL: default
3
+ MODEL: gpt-4o-mini
4
+ TEMPERATURE: 0
src/configs/parser/llamaparse_en.yaml ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ LANGUAGE: en
2
+ DISABLE_OCR: false
3
+ PAGE_ROC_BBOX:
4
+ TOP: 0
5
+ RIGHT: 0
6
+ BOTTOM: 0
7
+ LEFT: 0
src/domain/emotion_metrics.py DELETED
@@ -1,15 +0,0 @@
1
- from dataclasses import dataclass
2
- from typing import List, Dict
3
-
4
-
5
- @dataclass
6
- class EmotionMetrics:
7
- confidence_score: float
8
- engagement_level: float
9
- emotional_stability: float
10
- stress_indicators: List[str]
11
- dominant_emotions: Dict[str, float]
12
-
13
- def calculate_overall_score(self) -> float:
14
- # Implementation for calculating overall emotional score
15
- pass
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/domain/enums/emotion_types.py CHANGED
@@ -2,18 +2,20 @@ from enum import Enum
2
 
3
 
4
  class EmotionType(Enum):
5
- HAPPY = "happy"
6
  SAD = "sad"
 
7
  ANGRY = "angry"
 
 
 
8
  NEUTRAL = "neutral"
9
- SURPRISED = "surprised"
10
- FEARFUL = "fearful"
11
- DISGUSTED = "disgusted"
12
 
13
  @classmethod
14
  def get_positive_emotions(cls):
15
- return [cls.HAPPY, cls.NEUTRAL]
16
 
17
  @classmethod
18
  def get_negative_emotions(cls):
19
- return [cls.SAD, cls.ANGRY, cls.FEARFUL, cls.DISGUSTED]
 
2
 
3
 
4
  class EmotionType(Enum):
5
+
6
  SAD = "sad"
7
+ FEAR = "fear"
8
  ANGRY = "angry"
9
+ DISGUST = "disgust"
10
+
11
+ HAPPY = "happy"
12
  NEUTRAL = "neutral"
13
+ SURPRISE = "surprise"
 
 
14
 
15
  @classmethod
16
  def get_positive_emotions(cls):
17
+ return [cls.HAPPY, cls.NEUTRAL, cls.SURPRISE]
18
 
19
  @classmethod
20
  def get_negative_emotions(cls):
21
+ return [cls.SAD, cls.FEAR, cls.ANGRY, cls.DISGUST]
src/domain/resume.py DELETED
@@ -1,13 +0,0 @@
1
- from dataclasses import dataclass
2
- from typing import List, Dict
3
-
4
-
5
- @dataclass
6
- class Resume:
7
- id: str
8
- candidate_id: str
9
- file_path: str
10
- parsed_content: Dict
11
- skills: List[str]
12
- experience: List[Dict]
13
- education: List[Dict]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/llm/base_llm_provider.py ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Base class for LLM providers"""
2
+
3
+ from abc import abstractmethod
4
+ from typing import Dict, Optional
5
+
6
+
7
+ class BaseLLMProvider:
8
+ @abstractmethod
9
+ def __init__(self):
10
+ """LLM provider initialization"""
11
+ raise NotImplementedError
12
+
13
+ @abstractmethod
14
+ def complete(self, prompt: str = "") -> str:
15
+ """LLM chat completion implementation by each provider"""
16
+ raise NotImplementedError
src/llm/enums.py ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ OPENAI_LLM = "openai"
2
+ NVIDIA_LLM = "nvidia"
3
+ DEFAULT_LLM_API_BASE = "default"
src/llm/llm.py ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import yaml
2
+
3
+ from src.llm.enums import OPENAI_LLM, NVIDIA_LLM
4
+ from src.llm.base_llm_provider import BaseLLMProvider
5
+ from src.llm.openai_llm import OpenAILLM
6
+ from src.llm.nvidia_llm import NvidiaLLM
7
+
8
+
9
+ def get_llm(config_file_path: str = "config.yaml") -> BaseLLMProvider:
10
+ """
11
+ Initiates LLM client from config file
12
+ """
13
+
14
+ # load config
15
+ with open(config_file_path, "r") as f:
16
+ config = yaml.safe_load(f)
17
+
18
+ # init & return llm
19
+ if config["PROVIDER"] == OPENAI_LLM:
20
+ return OpenAILLM(
21
+ model=config["MODEL"],
22
+ temperature=config["TEMPERATURE"],
23
+ base_url=config["BASE_URL"],
24
+ )
25
+ elif config["PROVIDER"] == NVIDIA_LLM:
26
+ return NvidiaLLM(
27
+ model=config["MODEL"],
28
+ temperature=config["TEMPERATURE"],
29
+ base_url=config["BASE_URL"],
30
+ )
31
+ else:
32
+ raise ValueError(config["MODEL"])
src/llm/nvidia_llm.py ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """NVIDIA LLM Implementation"""
2
+
3
+ from llama_index.llms.nvidia import NVIDIA
4
+
5
+ from src.llm.base_llm_provider import BaseLLMProvider
6
+ from src.llm.enums import DEFAULT_LLM_API_BASE
7
+
8
+
9
+ class NvidiaLLM(BaseLLMProvider):
10
+ def __init__(
11
+ self,
12
+ model: str = "nvidia/llama-3.1-nemotron-70b-instruct",
13
+ temperature: float = 0.0,
14
+ base_url: str = "https://integrate.api.nvidia.com/v1",
15
+ ):
16
+ """Initiate NVIDIA client"""
17
+
18
+ if base_url == DEFAULT_LLM_API_BASE:
19
+ self._client = NVIDIA(
20
+ model=model,
21
+ temperature=temperature,
22
+ )
23
+ else:
24
+ self._client = NVIDIA(
25
+ model=model, temperature=temperature, base_url=base_url
26
+ )
27
+
28
+ def complete(self, prompt: str = "") -> str:
29
+ return str(self._client.complete(prompt))
src/llm/openai_llm.py ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """OpenAI LLM Implementation"""
2
+
3
+ from llama_index.llms.openai import OpenAI
4
+
5
+ from src.llm.base_llm_provider import BaseLLMProvider
6
+ from src.llm.enums import DEFAULT_LLM_API_BASE
7
+
8
+
9
+ class OpenAILLM(BaseLLMProvider):
10
+ def __init__(
11
+ self,
12
+ model: str = "gpt-4o-mini",
13
+ temperature: float = 0.0,
14
+ base_url: str = DEFAULT_LLM_API_BASE,
15
+ ):
16
+ """Initiate OpenAI client"""
17
+
18
+ if base_url == DEFAULT_LLM_API_BASE:
19
+ self._client = OpenAI(
20
+ model=model,
21
+ temperature=temperature,
22
+ )
23
+ else:
24
+ self._client = OpenAI(
25
+ model=model, temperature=temperature, base_url=base_url
26
+ )
27
+
28
+ def complete(self, prompt: str = "") -> str:
29
+ return str(self._client.complete(prompt))
src/main_test.py ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from dotenv import load_dotenv
2
+ from docx import Document
3
+
4
+ from src.llm.llm import get_llm
5
+ from src.service.resume_parser import ResumeParser
6
+ from src.service.emotion_recognition import EmotionRecognition
7
+ from src.service.utils import (
8
+ extract_audio,
9
+ audio2text,
10
+ sample_frames,
11
+ parse_yaml_string,
12
+ )
13
+ from src.template.grading_prompt import (
14
+ GRADE_RESPONSE_PROMPT,
15
+ RANKING_AND_FEEDBACK_PROMPT,
16
+ )
17
+
18
+ # sample input values
19
+ from src.sample_inputs import (
20
+ VIDEO_PATH,
21
+ RESUME_PATH,
22
+ INTERVIEW_QUESTION,
23
+ JOB_REQUIREMENTS,
24
+ )
25
+
26
+
27
+ # customise this part
28
+ LLM_CONFIG_FILE = "./src/configs/llm/openai-gpt-3.5-turbo.yaml"
29
+ # LLM_CONFIG_FILE = "./src/configs/llm/openai-gpt-4o-mini.yaml"
30
+ # LLM_CONFIG_FILE = "./src/configs/llm/nvidia-llama-3.1-nemotron-70b-instruct.yaml"
31
+
32
+ RESUME_PARSER_CONFIG_FILE = "./src/configs/parser/llamaparse_en.yaml"
33
+ OUTPUT_AUDIO_FILE = "/Users/gohyixian/Downloads/test_cases/outputs/audio_output.wav" # only supports .wav
34
+ OUTPUT_REPORT_FILE = "/Users/gohyixian/Downloads/test_cases/outputs/report.docx"
35
+
36
+ # init API keys as env variables
37
+ load_dotenv()
38
+
39
+ # init LLM & resume parser
40
+ llm = get_llm(LLM_CONFIG_FILE)
41
+ parser = ResumeParser(RESUME_PARSER_CONFIG_FILE)
42
+
43
+
44
+ # 1. extract audio from video
45
+ OUTPUT_AUDIO_FILE = extract_audio(VIDEO_PATH, OUTPUT_AUDIO_FILE)
46
+ assert OUTPUT_AUDIO_FILE is not None, f"Audio extraction failed."
47
+
48
+ # 2. audio to text
49
+ audio_text = audio2text(OUTPUT_AUDIO_FILE)
50
+ print(audio_text)
51
+
52
+ # 3. extract frames form video
53
+ frames = sample_frames(VIDEO_PATH, sample_rate=8)
54
+ print(frames)
55
+
56
+ # 4. deepface extract emotions & compite confidence scores
57
+ emotions = EmotionRecognition.detect_face_emotions(frames)
58
+ emotions_dict = EmotionRecognition.process_emotions(emotions)
59
+ conf_score = emotions_dict["conf"]
60
+ print(emotions_dict)
61
+
62
+ # 5. llamaparse parse resume into MD
63
+ resume_md = parser.parse_resume_to_markdown(RESUME_PATH)
64
+ print(resume_md)
65
+
66
+ # 6. llm grade question response
67
+ formatted_grading_prompt = GRADE_RESPONSE_PROMPT.format(
68
+ interview_question=INTERVIEW_QUESTION,
69
+ conf_score=conf_score,
70
+ response_text=audio_text,
71
+ )
72
+ grade = llm.complete(formatted_grading_prompt)
73
+ print(grade)
74
+
75
+ # 7. llm rank and output final feedback
76
+ formatted_ranking_prompt = RANKING_AND_FEEDBACK_PROMPT.format(
77
+ job_requirements=JOB_REQUIREMENTS, interview_feedback=grade, resume_text=resume_md
78
+ )
79
+ rank_and_feedback = llm.complete(formatted_ranking_prompt)
80
+ print(rank_and_feedback)
81
+
82
+
83
+ # 8. save to .docx report
84
+ expected_keys = ["name", "score", "feedback"]
85
+ rank_and_feedback_dict = parse_yaml_string(
86
+ yaml_string=rank_and_feedback, expected_keys=expected_keys, cleanup=True
87
+ )
88
+ print(rank_and_feedback_dict)
89
+
90
+ doc = Document()
91
+ doc.add_heading(f"{rank_and_feedback_dict['name']}", 0)
92
+ doc.add_heading(f"Overall Score: {rank_and_feedback_dict['score']}", 1)
93
+ doc.add_heading(f"Brief Overview", 1)
94
+ doc.add_paragraph(f"{rank_and_feedback_dict['feedback']}")
95
+
96
+ # Save the document
97
+ doc.save(OUTPUT_REPORT_FILE)
src/sample_inputs.py ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ RESUME_PATH = "/Users/gohyixian/Downloads/test_cases/CV_2024_24_JUN.pdf"
2
+
3
+ VIDEO_PATH = "/Users/gohyixian/Downloads/test_cases/test.mp4"
4
+
5
+ INTERVIEW_QUESTION = """
6
+ Can you describe a project where you fine-tuned a transformer-based model (e.g., BERT, GPT, or T5) for a specific application?
7
+ Walk us through your approach to dataset preparation, model optimization, and deployment.
8
+ How did you handle challenges like ensuring the model's performance, scalability, and fairness?
9
+ """
10
+
11
+ JOB_REQUIREMENTS = """
12
+ Job Title: LLM Engineer
13
+
14
+ Job Description:
15
+ ################
16
+ - We are seeking a skilled and innovative LLM Engineer to join our AI team. The ideal candidate will
17
+ have hands-on experience in developing, fine-tuning, and deploying large language models (LLMs) for
18
+ various applications. You will collaborate with cross-functional teams to deliver cutting-edge AI
19
+ solutions, leveraging your expertise in natural language processing (NLP), deep learning, and
20
+ large-scale systems.
21
+
22
+
23
+ Key Responsibilities
24
+ ####################
25
+ 1. Model Development:
26
+ - Design and fine-tune large language models (e.g., GPT, LLaMA, or similar) for tasks like text generation,
27
+ summarization, question answering, and classification.
28
+ - Implement advanced techniques for model optimization, including pruning, quantization, and distillation.
29
+
30
+ 2. Data Management:
31
+ - Curate, preprocess, and manage large datasets for training and evaluation.
32
+ - Ensure data quality by cleaning, augmenting, and annotating datasets.
33
+
34
+ 3. Infrastructure & Deployment:
35
+ - Build scalable pipelines for training and deploying LLMs using frameworks like PyTorch, TensorFlow, or JAX.
36
+ - Optimize inference speed and memory usage for production-grade applications.
37
+
38
+ 4. Model Evaluation:
39
+ - Develop benchmarks to evaluate model performance, fairness, and safety.
40
+ - Implement guardrails to mitigate bias and ensure ethical use of AI systems.
41
+
42
+ 5. Collaboration:
43
+ - Work closely with product managers, data scientists, and software engineers to align model capabilities with business requirements.
44
+ - Provide mentorship to junior team members and contribute to knowledge sharing within the team.
45
+
46
+ 6. Research & Innovation:
47
+ - Stay updated on the latest research in NLP and deep learning.
48
+ - Contribute to academic papers, patents, or open-source projects where appropriate.
49
+
50
+
51
+ Requirements
52
+ ############
53
+ 1. Technical Skills:
54
+ - Strong programming skills in Python.
55
+ - Proficiency with deep learning frameworks (e.g., PyTorch, TensorFlow, JAX).
56
+ - Experience in training and fine-tuning transformer-based models (e.g., BERT, GPT, T5).
57
+ - Familiarity with distributed training techniques and tools like Horovod or DeepSpeed.
58
+ - Knowledge of vector databases and retrieval-augmented generation (RAG) techniques.
59
+ - Hands-on experience with MLOps tools (e.g., MLflow, Docker, Kubernetes) for deployment.
60
+ - Expertise in working with APIs for integrating LLMs into production systems.
61
+
62
+ 2. Educational Background:
63
+ - Bachelor’s or Master’s degree in Computer Science, Artificial Intelligence, Data Science, or a related field. Ph.D. preferred but not required.
64
+
65
+ 3. Experience:
66
+ - 3+ years of experience in NLP, machine learning, or a related field.
67
+ - Demonstrated success in building and deploying LLM-powered applications.
68
+ - Contributions to open-source projects or research publications in NLP are a plus.
69
+
70
+ 4. Soft Skills:
71
+ - Strong problem-solving abilities and attention to detail.
72
+ - Excellent communication and collaboration skills to work with cross-functional teams.
73
+ - Adaptable, with a passion for continuous learning and innovation.
74
+ - A proactive and goal-oriented mindset.
75
+
76
+ 5. Target Personalities:
77
+ - Innovative Thinker: Always exploring new ways to improve model performance and usability.
78
+ - Team Player: Collaborates effectively across diverse teams to deliver AI solutions.
79
+ - Ethically Minded: Committed to ensuring the ethical and fair use of AI technologies.
80
+ - Detail-Oriented: Meticulous in coding, data handling, and model evaluation.
81
+ - Resilient Learner: Thrives in a fast-paced environment, keeping up with advancements in AI research.
82
+
83
+
84
+ Preferred Qualifications:
85
+ #########################
86
+ - Experience with foundation model APIs (e.g., OpenAI, Hugging Face).
87
+ - Knowledge of reinforcement learning techniques, particularly RLHF (Reinforcement Learning with Human Feedback).
88
+ - Familiarity with multi-modal LLMs and their integration.
89
+ - Experience working in cloud environments like AWS, Azure, or GCP.
90
+ - Contributions to community forums, blogs, or conferences related to LLMs or NLP.
91
+
92
+ What We Offer
93
+ #############
94
+ - Competitive salary and benefits package.
95
+ - Opportunities to work on groundbreaking AI projects.
96
+ - Flexible work environment, including remote options.
97
+ - Access to cutting-edge resources and infrastructure for AI development.
98
+ """
src/service/emotion_recognition.py ADDED
@@ -0,0 +1,136 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ from deepface import DeepFace
3
+
4
+ from src.domain.enums.emotion_types import EmotionType
5
+
6
+
7
+ class EmotionRecognition:
8
+ def __init__(self):
9
+ pass
10
+
11
+ @classmethod
12
+ def detect_face_emotions(cls, frames: list[np.ndarray] = None) -> list:
13
+ """
14
+ Performs facial emotion detection using the DeepFace model
15
+ """
16
+ emotions = []
17
+ for frame in frames:
18
+ frame_result = DeepFace.analyze(
19
+ frame, actions=["emotion"], enforce_detection=False
20
+ )
21
+ emotions.append(frame_result)
22
+
23
+ return emotions
24
+
25
+ @classmethod
26
+ def process_emotions(cls, emotions: list) -> dict:
27
+ """
28
+ Processes the emotions by calculating the overall confidence score using a
29
+ custom weighted emotion balancing algorithm.
30
+
31
+ Returns:
32
+ - weighted normalized score
33
+ - signed, weighted normalized score
34
+ - confidence score
35
+ """
36
+
37
+ count = 0
38
+ emots = {
39
+ str(EmotionType.SAD.value): 0,
40
+ str(EmotionType.FEAR.value): 0,
41
+ str(EmotionType.ANGRY.value): 0,
42
+ str(EmotionType.DISGUST.value): 0,
43
+ str(EmotionType.HAPPY.value): 0,
44
+ str(EmotionType.NEUTRAL.value): 0,
45
+ str(EmotionType.SURPRISE.value): 0,
46
+ }
47
+
48
+ for frame_result in emotions:
49
+ if len(frame_result) > 0:
50
+ emot = frame_result[0]["emotion"]
51
+ emots[str(EmotionType.SAD.value)] = (
52
+ emots.get(str(EmotionType.SAD.value), 0)
53
+ + emot[str(EmotionType.SAD.value)]
54
+ )
55
+ emots[str(EmotionType.FEAR.value)] = (
56
+ emots.get(str(EmotionType.FEAR.value), 0)
57
+ + emot[str(EmotionType.FEAR.value)]
58
+ )
59
+ emots[str(EmotionType.ANGRY.value)] = (
60
+ emots.get(str(EmotionType.ANGRY.value), 0)
61
+ + emot[str(EmotionType.ANGRY.value)]
62
+ )
63
+ emots[str(EmotionType.DISGUST.value)] = (
64
+ emots.get(str(EmotionType.DISGUST.value), 0)
65
+ + emot[str(EmotionType.DISGUST.value)]
66
+ )
67
+ emots[str(EmotionType.HAPPY.value)] = (
68
+ emots.get(str(EmotionType.HAPPY.value), 0)
69
+ + emot[str(EmotionType.HAPPY.value)]
70
+ )
71
+ emots[str(EmotionType.NEUTRAL.value)] = (
72
+ emots.get(str(EmotionType.NEUTRAL.value), 0)
73
+ + emot[str(EmotionType.NEUTRAL.value)]
74
+ )
75
+ emots[str(EmotionType.SURPRISE.value)] = (
76
+ emots.get(str(EmotionType.SURPRISE.value), 0)
77
+ + emot[str(EmotionType.SURPRISE.value)]
78
+ )
79
+ count += 1
80
+
81
+ # prevent zero division
82
+ if count == 0:
83
+ count = 1
84
+
85
+ for i in list(emots.keys()):
86
+ emots[i] /= count * 100
87
+
88
+ # refactor according to custom weightage
89
+ sad_score = emots[str(EmotionType.SAD.value)] * 1.3
90
+ fear_score = emots[str(EmotionType.FEAR.value)] * 1.3
91
+ angry_score = emots[str(EmotionType.ANGRY.value)] * 1.3
92
+ disgust_score = emots[str(EmotionType.DISGUST.value)] * 10
93
+ happy_score = emots[str(EmotionType.HAPPY.value)] * 1.7
94
+ neutral_score = emots[str(EmotionType.NEUTRAL.value)] / 1.2
95
+ surprise_score = emots[str(EmotionType.SURPRISE.value)] * 1.4
96
+
97
+ score_list = [
98
+ sad_score,
99
+ angry_score,
100
+ surprise_score,
101
+ fear_score,
102
+ happy_score,
103
+ disgust_score,
104
+ neutral_score,
105
+ ]
106
+ normalized_scores = cls.__normalize_scores(score_list)
107
+ mean = np.mean(normalized_scores)
108
+
109
+ result_scores = [
110
+ (-sad_score),
111
+ (-angry_score),
112
+ surprise_score,
113
+ (-fear_score),
114
+ happy_score,
115
+ (-disgust_score),
116
+ neutral_score,
117
+ ]
118
+ normalized_result_scores = cls.__normalize_scores(result_scores)
119
+ result = np.mean(normalized_result_scores)
120
+
121
+ difference = abs((mean - result) / mean) * 100
122
+
123
+ # keep values in range of [0, 100]
124
+ difference = min(difference, 50)
125
+
126
+ if mean > result:
127
+ conf = 50 - difference
128
+ else:
129
+ conf = 50 + difference
130
+
131
+ return {"mean": mean, "result": result, "conf": conf}
132
+
133
+ @classmethod
134
+ def __normalize_scores(cls, scores: list) -> list:
135
+ min_val, max_val = min(scores), max(scores)
136
+ return [(score - min_val) / (max_val - min_val) for score in scores]
src/service/interview_analyzer.py DELETED
@@ -1,32 +0,0 @@
1
- # from src.domain.enums.file_types import VideoFileType
2
- # from src.domain.enums.emotion_types import EmotionType
3
- # from src.domain.entities.interview import Interview
4
- # from typing import Dict, List
5
- #
6
- #
7
- # class InterviewAnalyzer:
8
- # def validate_video(self, video_path: str) -> bool:
9
- # file_extension = video_path[video_path.rfind(".") :]
10
- # return VideoFileType.validate_format(file_extension)
11
- #
12
- # def analyze_emotions(
13
- # self, emotion_data: Dict[str, float]
14
- # ) -> Dict[EmotionType, float]:
15
- # analyzed_emotions = {}
16
- # for emotion_name, score in emotion_data.items():
17
- # try:
18
- # emotion_type = EmotionType(emotion_name.lower())
19
- # analyzed_emotions[emotion_type] = score
20
- # except ValueError:
21
- # continue
22
- # return analyzed_emotions
23
- #
24
- # def get_dominant_emotion(
25
- # self, emotion_scores: Dict[EmotionType, float]
26
- # ) -> EmotionType:
27
- # return max(emotion_scores.items(), key=lambda x: x[1])[0]
28
- #
29
- # def is_positive_response(self, emotion_scores: Dict[EmotionType, float]) -> bool:
30
- # positive_emotions = EmotionType.get_positive_emotions()
31
- # dominant_emotion = self.get_dominant_emotion(emotion_scores)
32
- # return dominant_emotion in positive_emotions
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/service/resume_parser.py ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import yaml
2
+ from llama_parse import LlamaParse
3
+ from llama_index.core import SimpleDirectoryReader
4
+
5
+ from src.template.parser_prompt import PARSE_RESUME_PROMPT
6
+
7
+
8
+ class ResumeParser:
9
+ def __init__(self, config_file_path: str = "config.yaml"):
10
+ """
11
+ Initiates a resume parser client
12
+ """
13
+
14
+ # load config
15
+ with open(config_file_path, "r") as f:
16
+ config = yaml.safe_load(f)
17
+
18
+ # set bbox size
19
+ bbox_margin = config["PAGE_ROC_BBOX"]
20
+ bbox = f"{bbox_margin['TOP']},{bbox_margin['RIGHT']},{bbox_margin['BOTTOM']},{bbox_margin['LEFT']}"
21
+
22
+ self._parser = LlamaParse(
23
+ language=config["LANGUAGE"],
24
+ disable_ocr=config["DISABLE_OCR"],
25
+ bounding_box=bbox,
26
+ result_type="markdown",
27
+ parsing_instruction=PARSE_RESUME_PROMPT,
28
+ is_formatting_instruction=False,
29
+ )
30
+
31
+ def parse_resume_to_markdown(self, resume_path: str = "") -> str:
32
+ """
33
+ Parses the resume into markdown text.
34
+
35
+ Supported filetypes:
36
+ - .pdf
37
+ """
38
+ document = SimpleDirectoryReader(
39
+ input_files=[resume_path], file_extractor={".pdf": self._parser}
40
+ ).load_data()
41
+
42
+ return "\n".join([str(d.text) for d in document])
src/service/utils.py ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import yaml
3
+ import numpy as np
4
+ from pathlib import Path
5
+ import speech_recognition as sr
6
+ from moviepy import VideoFileClip
7
+
8
+
9
+ def extract_audio(
10
+ input_video_file: str = "",
11
+ output_audio_file: str = "",
12
+ ) -> str:
13
+ """
14
+ Extracts audio from input video file, and save it to the respective path.
15
+ Returns the path to the saved audio file if extraction is successful.
16
+ Supported input video file formats are:
17
+ - .mp4
18
+ - .mov
19
+
20
+ Supported output audio file formats are:
21
+ - .wav
22
+ """
23
+ try:
24
+ input_video_file = str(Path(input_video_file))
25
+ output_audio_file = str(Path(output_audio_file))
26
+
27
+ # Load the video file
28
+ video = VideoFileClip(input_video_file)
29
+
30
+ # Extract audio and write to output file
31
+ video.audio.write_audiofile(output_audio_file)
32
+
33
+ print(f"[extract_audio()] : Audio extracted and saved to {output_audio_file}")
34
+
35
+ return output_audio_file
36
+ except Exception as e:
37
+ print(e)
38
+ return None
39
+
40
+
41
+ def audio2text(audio_file: str = "") -> str:
42
+ """
43
+ Converts audio to text using Google's text-to-audio engine (Local),
44
+ and returns the text.
45
+ """
46
+ r = sr.Recognizer()
47
+ with sr.AudioFile(audio_file) as source:
48
+ audio = r.record(source)
49
+ text = r.recognize_google(audio)
50
+ return text
51
+
52
+
53
+ def sample_frames(input_video_file: str = "", sample_rate: int = 2) -> list[np.ndarray]:
54
+ """
55
+ Samples one frame every 'sample_rate' frames from the video file and returns
56
+ them in the form of a list of Numpy ndarray objects.
57
+ """
58
+ cap = cv2.VideoCapture(input_video_file)
59
+ frames = []
60
+ count = 0
61
+
62
+ while cap.isOpened():
63
+ ret, frame = cap.read()
64
+ if not ret:
65
+ break
66
+ if count % sample_rate == 0:
67
+ frames.append(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
68
+ count += 1
69
+ cap.release()
70
+
71
+ return frames
72
+
73
+
74
+ def parse_yaml_string(
75
+ yaml_string: str = "", expected_keys: list[str] = None, cleanup: bool = True
76
+ ) -> dict:
77
+ """
78
+ Parses a YAML string into a Python dictionary based on a list of
79
+ expected keys.
80
+ """
81
+
82
+ # removes ```YAML ``` heading and footers if present
83
+ if cleanup:
84
+ yaml_string = yaml_string.replace("YAML", "")
85
+ yaml_string = yaml_string.replace("yaml", "")
86
+ yaml_string = yaml_string.replace("`", "")
87
+
88
+ try:
89
+ parsed_data = yaml.safe_load(yaml_string)
90
+
91
+ # Handle missing keys with error handling
92
+ result = {}
93
+ for key in expected_keys:
94
+ if key in parsed_data:
95
+ result[key] = parsed_data[key]
96
+ else:
97
+ print(f"[parse_yaml_string()] : Missing key {key}")
98
+
99
+ return result
100
+
101
+ except KeyError as e:
102
+ print(e)
103
+ return None
src/template/grading_prompt.py ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from llama_index.core.prompts import PromptTemplate
2
+
3
+ GRADE_RESPONSE_PROMPT = PromptTemplate(
4
+ """
5
+ You are a Human Resource Manager and an interviewer.
6
+ Your task is to review an interviewee's overall performance based on multiple factors.
7
+ You will be provided with the interview question, the interviewee's facial confidence score, their response to the question in text form, and additional context on the interview.
8
+
9
+ The confidence score will range from 0 to 100, and you will also receive the text of their answers to the interview question.
10
+ Based on this information, evaluate the interviewee’s performance in the following areas:
11
+
12
+ 1. **Answer Quality**:
13
+ Assess the clarity, relevance, and accuracy of their response to the interview question.
14
+ Did the interviewee address the key points effectively?
15
+
16
+ 2. **Problem-Solving Skills**:
17
+ Evaluate how well the interviewee tackled any problem presented in the interview question.
18
+ Were they able to think critically, analyze the situation, and propose solutions?
19
+
20
+ 3. **Confidence**:
21
+ Based on their facial confidence score (0 to 100) and their overall demeanor in the response, rate their confidence level and how it impacts their presentation and communication.
22
+
23
+ 4. **Personality**:
24
+ Consider the tone, communication style, and interpersonal skills of the interviewee.
25
+ How well did they engage with the question and the interview process?
26
+ Do they demonstrate qualities like openness, empathy, or assertiveness?
27
+
28
+ 5. **Overall Performance**:
29
+ Based on the combination of the above factors, provide a holistic evaluation of their performance in the interview.
30
+ Offer feedback on strengths and areas for improvement.
31
+
32
+ Ensure that your feedback is clear and actionable, so other HR professionals reviewing the interview can easily assess the interviewee's suitability for the position.
33
+
34
+
35
+ ########################################
36
+ Interview Question:
37
+ {interview_question}
38
+
39
+ ########################################
40
+ Interviewee's Facial Confidence Score:
41
+ {conf_score}
42
+
43
+ ########################################
44
+ Interviewee's response in text:
45
+ {response_text}
46
+
47
+ ########################################
48
+ output:
49
+ """
50
+ )
51
+
52
+
53
+ RANKING_AND_FEEDBACK_PROMPT = PromptTemplate(
54
+ """
55
+ You are an HR specialist evaluating an interviewee for a specific role.
56
+ Your task is to assess the suitability of the interviewee based on the following information:
57
+
58
+ 1. **Job Requirements**:
59
+ A list of skills, experiences, and qualifications required for the role.
60
+
61
+ 2. **Interview Feedback**:
62
+ The feedback and review of the interviewee’s performance in the interview, which includes assessments on their answer quality, problem-solving skills, confidence, personality, and overall performance.
63
+
64
+ 3. **Resume Text**:
65
+ A parsed version of the interviewee's resume, which includes their work experience, skills, education, and other relevant information.
66
+
67
+ Using these inputs, generate an output strictly in the following YAML format:
68
+
69
+ ###########################
70
+ name: <name>
71
+ score: <score>
72
+ feedback: <feedback text>
73
+ ###########################
74
+
75
+
76
+ Details for the output:
77
+ 1. **name**:
78
+ Name of the interviewee.
79
+
80
+ 2. **score**:
81
+ A score ranging from 0 to 100, where 0 means the interviewee is not recommended for the position, and 100 means they are a perfect match for the job.
82
+
83
+ 3. **feedback**:
84
+ - A detailed breakdown explaining how the interviewee’s experience, skills, and performance align or do not align with the job requirements.
85
+ - Discuss whether the interviewee’s skills, experiences, and overall traits match or fail to meet the required qualifications.
86
+ - Provide a short, concise sentence summarizing the interviewee’s suitability for the role.
87
+
88
+ Ensure that the feedback is comprehensive yet concise, offering actionable insights for HR professionals to make a decision about the interviewee’s fit for the role.
89
+
90
+
91
+ ########################################
92
+ Job Requirements:
93
+ {job_requirements}
94
+
95
+ ########################################
96
+ Interview Feedback:
97
+ {interview_feedback}
98
+
99
+ ########################################
100
+ Resume Text:
101
+ {resume_text}
102
+
103
+ ########################################
104
+
105
+ Output strictly following the below YAML format:
106
+
107
+ name: <name>
108
+ score: <score>
109
+ feedback: <feedback text>
110
+ """
111
+ )
src/template/parser_prompt.py ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from llama_index.core.prompts import PromptTemplate
2
+
3
+ PARSE_RESUME_PROMPT = """
4
+ You are tasked with parsing a resume.
5
+
6
+ **Your Focus**:
7
+ - Reproduce only the main body text, including section headers and bullet points, exactly as received.
8
+ - Do not skip section numbers in the format DIGIT.DIGIT (e.g., 10.1, 3.1), you must apply a markdown header level based on the depth (e.g., # for main sections, ## for subsections) to reflect the appropriate hierarchy, and output them.
9
+ - Do make sure that section numbers are always followed by the corresponding section title without a '\n' character in between or separating them into different headers. Valid examples are as below:
10
+ - '# 14 Experience'
11
+ - '# 2 Education'
12
+ Invalid examples are as below:
13
+ - '# 14\n # Experience'
14
+ - '# 2\n # Education'
15
+ - You may only add markdown header symbols (#, ##, ###, etc.) to denote the hierarchical levels of section headers.
16
+ - Do not make up any text and headers that are not present in the original text.
17
+
18
+ **Expected Output**:
19
+ - Text, section headers, and bullet points must be reproduced without any text edits, additions, or deletions, other than adding markdown header symbols (#, ##, ###, etc.).
20
+ - Use markdown headers to denote additional hierarchy (e.g., # for main sections, ## for subsections) based on the best interpretation of the document’s structure.
21
+ """