Spaces:
Sleeping
Sleeping
Upload 5 files
Browse files- app.py +263 -0
- books.pkl +3 -0
- final.pkl +3 -0
- pt.pkl +3 -0
- similarity.pkl +3 -0
app.py
ADDED
@@ -0,0 +1,263 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import requests
|
5 |
+
|
6 |
+
|
7 |
+
df = pd.read_pickle('popular.pkl')
|
8 |
+
|
9 |
+
books = pd.read_pickle('books.pkl')
|
10 |
+
similarity_scores = pd.read_pickle('similarity.pkl')
|
11 |
+
pt = pd.read_pickle('pt.pkl')
|
12 |
+
final_books = pd.read_pickle("final.pkl")
|
13 |
+
|
14 |
+
|
15 |
+
|
16 |
+
def recommend_book(book_name):
|
17 |
+
# fetch index
|
18 |
+
index = np.where(pt.index==book_name)[0][0]
|
19 |
+
|
20 |
+
similar_items = sorted(list(enumerate(similarity_scores[index])),key=lambda x:x[1],reverse=True)[1:6]
|
21 |
+
|
22 |
+
data=[]
|
23 |
+
for i in similar_items:
|
24 |
+
item=[]
|
25 |
+
temp_df = books[books['Book-Title'] == pt.index[i[0]]]
|
26 |
+
item.extend(list(temp_df.drop_duplicates('Book-Title')['Book-Title'].values))
|
27 |
+
item.extend(list(temp_df.drop_duplicates('Book-Title')['Book-Author'].values))
|
28 |
+
item.extend(list(temp_df.drop_duplicates('Book-Title')['Image-URL-M'].values))
|
29 |
+
|
30 |
+
|
31 |
+
data.append(item)
|
32 |
+
return data
|
33 |
+
|
34 |
+
def fetch_book_details(book_name):
|
35 |
+
url = 'https://www.googleapis.com/books/v1/volumes?q={}'.format(book_name)
|
36 |
+
response=requests.get(url)
|
37 |
+
obj=response.json()
|
38 |
+
book_details=[]
|
39 |
+
ids = [id['id'] for id in obj['items']]
|
40 |
+
ids = ids[0]
|
41 |
+
title = obj['items'][0]['volumeInfo']['title']
|
42 |
+
author = obj['items'][0]['volumeInfo']['authors'][0]
|
43 |
+
publish_date= obj['items'][0]['volumeInfo']['publishedDate']
|
44 |
+
image = obj['items'][0]['volumeInfo']['imageLinks']['thumbnail']
|
45 |
+
preview_link = obj['items'][0]['volumeInfo']['previewLink']
|
46 |
+
info = obj['items'][0]['volumeInfo']['infoLink']
|
47 |
+
book_details.append(ids)
|
48 |
+
book_details.append(title)
|
49 |
+
|
50 |
+
book_details.append(author)
|
51 |
+
|
52 |
+
book_details.append(publish_date)
|
53 |
+
book_details.append(preview_link)
|
54 |
+
book_details.append(info)
|
55 |
+
book_details.append(image)
|
56 |
+
print(book_details)
|
57 |
+
return book_details
|
58 |
+
|
59 |
+
|
60 |
+
|
61 |
+
menu = ['top20','recommender','about']
|
62 |
+
|
63 |
+
option = st.sidebar.selectbox("Select One: ",menu)
|
64 |
+
|
65 |
+
if option == 'top20':
|
66 |
+
st.title("Top 20 Books")
|
67 |
+
st.text("")
|
68 |
+
col1,col2,col3,col4=st.columns(4)
|
69 |
+
with col1:
|
70 |
+
st.image(df['Image-URL-M'][0])
|
71 |
+
st.markdown(f"[{df['Book-Title'][0]}]({fetch_book_details(df['Book-Title'][0])[5]})")
|
72 |
+
|
73 |
+
st.markdown(f"<b>Author:<b>{df['Book-Author'][0]}",unsafe_allow_html=True)
|
74 |
+
st.markdown(f"Votes - {df['num_ratings'][0]}")
|
75 |
+
st.markdown(f"rating - {round(df['avg_ratings'][0],2)}")
|
76 |
+
with col2:
|
77 |
+
st.image(df['Image-URL-M'][3])
|
78 |
+
st.markdown(f"[{df['Book-Title'][3]}]({fetch_book_details(df['Book-Title'][3])[5]})")
|
79 |
+
|
80 |
+
st.markdown(f"<b>Author:<b>{df['Book-Author'][3]}",unsafe_allow_html=True)
|
81 |
+
st.markdown(f"Votes - {df['num_ratings'][3]}")
|
82 |
+
st.markdown(f"rating - {round(df['avg_ratings'][3],2)}")
|
83 |
+
with col3:
|
84 |
+
st.image(df['Image-URL-M'][5])
|
85 |
+
st.markdown(f"[{df['Book-Title'][5]}]({fetch_book_details(df['Book-Title'][5])[5]})")
|
86 |
+
|
87 |
+
st.markdown(f"<b>Author:<b>{df['Book-Author'][5]}",unsafe_allow_html=True)
|
88 |
+
st.markdown(f"Votes - {df['num_ratings'][5]}")
|
89 |
+
st.markdown(f"rating - {round(df['avg_ratings'][5],2)}")
|
90 |
+
with col4:
|
91 |
+
st.image(df['Image-URL-M'][9])
|
92 |
+
st.markdown(f"[{df['Book-Title'][9]}]({fetch_book_details(df['Book-Title'][9])[5]})")
|
93 |
+
|
94 |
+
st.markdown(f"<b>Author:<b>{df['Book-Author'][9]}",unsafe_allow_html=True)
|
95 |
+
st.markdown(f"Votes - {df['num_ratings'][9]}")
|
96 |
+
st.markdown(f"rating - {round(df['avg_ratings'][9],2)}")
|
97 |
+
|
98 |
+
st.text("")
|
99 |
+
col1,col2,col3,col4=st.columns(4)
|
100 |
+
with col1:
|
101 |
+
st.image(df['Image-URL-M'][13])
|
102 |
+
st.markdown(f"[{df['Book-Title'][13]}]({fetch_book_details(df['Book-Title'][13])[5]})")
|
103 |
+
st.markdown(df['Book-Title'][13][0:40])
|
104 |
+
st.markdown(f"<b>Author:<b>{df['Book-Author'][13]}",unsafe_allow_html=True)
|
105 |
+
st.markdown(f"Votes - {df['num_ratings'][13]}")
|
106 |
+
st.markdown(f"rating - {round(df['avg_ratings'][13],2)}")
|
107 |
+
with col2:
|
108 |
+
st.image(df['Image-URL-M'][16])
|
109 |
+
st.markdown(f"[{df['Book-Title'][16]}]({fetch_book_details(df['Book-Title'][16])[5]})")
|
110 |
+
|
111 |
+
st.markdown(f"<b>Author:<b>{df['Book-Author'][16]}",unsafe_allow_html=True)
|
112 |
+
st.markdown(f"Votes - {df['num_ratings'][16]}")
|
113 |
+
st.markdown(f"rating - {round(df['avg_ratings'][16],2)}")
|
114 |
+
with col3:
|
115 |
+
st.image(df['Image-URL-M'][17])
|
116 |
+
st.markdown(f"[{df['Book-Title'][17]}]({fetch_book_details(df['Book-Title'][17])[5]})")
|
117 |
+
st.markdown(f"<b>Author:<b>{df['Book-Author'][17]}",unsafe_allow_html=True)
|
118 |
+
st.markdown(f"Votes - {df['num_ratings'][17]}")
|
119 |
+
st.markdown(f"rating - {round(df['avg_ratings'][17],2)}")
|
120 |
+
with col4:
|
121 |
+
st.image(df['Image-URL-M'][26])
|
122 |
+
st.markdown(f"[{df['Book-Title'][26]}]({fetch_book_details(df['Book-Title'][26])[5]})")
|
123 |
+
st.markdown(df['Book-Title'][26][0:40])
|
124 |
+
st.markdown(f"<b>Author:<b>{df['Book-Author'][26]}",unsafe_allow_html=True)
|
125 |
+
st.markdown(f"Votes - {df['num_ratings'][26]}")
|
126 |
+
st.markdown(f"rating - {round(df['avg_ratings'][26],2)}")
|
127 |
+
|
128 |
+
st.text("")
|
129 |
+
col1,col2,col3,col4=st.columns(4)
|
130 |
+
with col1:
|
131 |
+
st.image(df['Image-URL-M'][28])
|
132 |
+
st.markdown(f"[{df['Book-Title'][17]}]({fetch_book_details(df['Book-Title'][17])[5]})")
|
133 |
+
|
134 |
+
st.markdown(f"<b>Author:<b>{df['Book-Author'][28]}",unsafe_allow_html=True)
|
135 |
+
st.markdown(f"Votes - {df['num_ratings'][28]}")
|
136 |
+
st.markdown(f"rating - {round(df['avg_ratings'][28],2)}")
|
137 |
+
with col2:
|
138 |
+
st.image(df['Image-URL-M'][39])
|
139 |
+
st.markdown(f"[{df['Book-Title'][39]}]({fetch_book_details(df['Book-Title'][39])[5]})")
|
140 |
+
|
141 |
+
st.markdown(f"<b>Author:<b>{df['Book-Author'][39]}",unsafe_allow_html=True)
|
142 |
+
st.markdown(f"Votes - {df['num_ratings'][39]}")
|
143 |
+
st.markdown(f"rating - {round(df['avg_ratings'][39],2)}")
|
144 |
+
with col3:
|
145 |
+
st.image(df['Image-URL-M'][47])
|
146 |
+
st.markdown(f"[{df['Book-Title'][47]}]({fetch_book_details(df['Book-Title'][47])[5]})")
|
147 |
+
|
148 |
+
st.markdown(f"<b>Author:<b>{df['Book-Author'][47]}",unsafe_allow_html=True)
|
149 |
+
st.markdown(f"Votes - {df['num_ratings'][47]}")
|
150 |
+
st.markdown(f"rating - {round(df['avg_ratings'][47],2)}")
|
151 |
+
with col4:
|
152 |
+
st.image(df['Image-URL-M'][53])
|
153 |
+
st.markdown(f"[{df['Book-Title'][53]}]({fetch_book_details(df['Book-Title'][53])[5]})")
|
154 |
+
|
155 |
+
st.markdown(f"<b>Author:<b>{df['Book-Author'][53]}",unsafe_allow_html=True)
|
156 |
+
st.markdown(f"Votes - {df['num_ratings'][53]}")
|
157 |
+
st.markdown(f"rating - {round(df['avg_ratings'][53],2)}")
|
158 |
+
|
159 |
+
st.text("")
|
160 |
+
col1,col2,col3,col4=st.columns(4)
|
161 |
+
with col1:
|
162 |
+
st.image(df['Image-URL-M'][55])
|
163 |
+
st.markdown(f"[{df['Book-Title'][55]}]({fetch_book_details(df['Book-Title'][55])[5]})")
|
164 |
+
|
165 |
+
st.markdown(f"<b>Author:<b>{df['Book-Author'][55]}",unsafe_allow_html=True)
|
166 |
+
st.markdown(f"Votes - {df['num_ratings'][55]}")
|
167 |
+
st.markdown(f"rating - {round(df['avg_ratings'][55],2)}")
|
168 |
+
with col2:
|
169 |
+
st.image(df['Image-URL-M'][62])
|
170 |
+
st.markdown(f"[{df['Book-Title'][62]}]({fetch_book_details(df['Book-Title'][62])[5]})")
|
171 |
+
|
172 |
+
st.markdown(f"<b>Author:<b>{df['Book-Author'][62]}",unsafe_allow_html=True)
|
173 |
+
st.markdown(f"Votes - {df['num_ratings'][62]}")
|
174 |
+
st.markdown(f"rating - {round(df['avg_ratings'][62],2)}")
|
175 |
+
with col3:
|
176 |
+
st.image(df['Image-URL-M'][63])
|
177 |
+
st.markdown(f"[{df['Book-Title'][63]}]({fetch_book_details(df['Book-Title'][63])[5]})")
|
178 |
+
|
179 |
+
st.markdown(f"<b>Author:<b>{df['Book-Author'][63]}",unsafe_allow_html=True)
|
180 |
+
st.markdown(f"Votes - {df['num_ratings'][63]}")
|
181 |
+
st.markdown(f"rating - {round(df['avg_ratings'][63],2)}")
|
182 |
+
with col4:
|
183 |
+
st.image(df['Image-URL-M'][72])
|
184 |
+
st.markdown(f"[{df['Book-Title'][72]}]({fetch_book_details(df['Book-Title'][72])[5]})")
|
185 |
+
|
186 |
+
st.markdown(f"<b>Author:<b>{df['Book-Author'][72]}",unsafe_allow_html=True)
|
187 |
+
st.markdown(f"Votes - {df['num_ratings'][72]}")
|
188 |
+
st.markdown(f"rating - {round(df['avg_ratings'][72],2)}")
|
189 |
+
|
190 |
+
|
191 |
+
st.text("")
|
192 |
+
col1,col2,col3,col4=st.columns(4)
|
193 |
+
with col1:
|
194 |
+
st.image(df['Image-URL-M'][73])
|
195 |
+
st.markdown(f"[{df['Book-Title'][73]}]({fetch_book_details(df['Book-Title'][73])[5]})")
|
196 |
+
|
197 |
+
st.markdown(f"<b>Author:<b>{df['Book-Author'][73]}",unsafe_allow_html=True)
|
198 |
+
st.markdown(f"Votes - {df['num_ratings'][73]}")
|
199 |
+
st.markdown(f"rating - {round(df['avg_ratings'][73],2)}")
|
200 |
+
with col2:
|
201 |
+
st.image(df['Image-URL-M'][78])
|
202 |
+
st.markdown(f"[{df['Book-Title'][78]}]({fetch_book_details(df['Book-Title'][78])[5]})")
|
203 |
+
|
204 |
+
st.markdown(f"<b>Author:<b>{df['Book-Author'][78]}",unsafe_allow_html=True)
|
205 |
+
st.markdown(f"Votes - {df['num_ratings'][78]}")
|
206 |
+
st.markdown(f"rating - {round(df['avg_ratings'][78],2)}")
|
207 |
+
with col3:
|
208 |
+
st.image(df['Image-URL-M'][84])
|
209 |
+
st.markdown(f"[{df['Book-Title'][84]}]({fetch_book_details(df['Book-Title'][84])[5]})")
|
210 |
+
|
211 |
+
st.markdown(f"<b>Author:<b>{df['Book-Author'][84]}",unsafe_allow_html=True)
|
212 |
+
st.markdown(f"Votes - {df['num_ratings'][84]}")
|
213 |
+
st.markdown(f"rating - {round(df['avg_ratings'][84],2)}")
|
214 |
+
with col4:
|
215 |
+
st.image(df['Image-URL-M'][85])
|
216 |
+
st.markdown(f"[{df['Book-Title'][85]}]({fetch_book_details(df['Book-Title'][85])[5]})")
|
217 |
+
|
218 |
+
st.markdown(f"<b>Author:<b>{df['Book-Author'][85]}",unsafe_allow_html=True)
|
219 |
+
st.markdown(f"Votes - {df['num_ratings'][85]}")
|
220 |
+
st.markdown(f"rating - {round(df['avg_ratings'][85],2)}")
|
221 |
+
|
222 |
+
elif option=='recommender':
|
223 |
+
st.title("Books Recommender System")
|
224 |
+
book_list = final_books['Book-Title'].values
|
225 |
+
selected_book = st.selectbox("Select your book ",book_list)
|
226 |
+
if st.button("show recommendation"):
|
227 |
+
st.header("Recommend For You....")
|
228 |
+
st.text("")
|
229 |
+
data=recommend_book(selected_book)
|
230 |
+
col1,col2,col3,col4=st.columns(4)
|
231 |
+
|
232 |
+
with col1:
|
233 |
+
st.image(fetch_book_details(data[0][0])[6])
|
234 |
+
st.markdown(f"[{data[0][0]}]({fetch_book_details(data[0][0])[5]})")
|
235 |
+
|
236 |
+
|
237 |
+
with col2:
|
238 |
+
st.image(fetch_book_details(data[1][0])[6])
|
239 |
+
st.markdown(f"[{data[1][0]}]({fetch_book_details(data[1][0])[5]})")
|
240 |
+
|
241 |
+
with col3:
|
242 |
+
st.image(fetch_book_details(data[2][0])[6])
|
243 |
+
st.markdown(f"[{data[2][0]}]({fetch_book_details(data[2][0])[5]})")
|
244 |
+
|
245 |
+
|
246 |
+
with col4:
|
247 |
+
st.image(fetch_book_details(data[3][0])[6])
|
248 |
+
st.markdown(f"[{data[3][0]}]({fetch_book_details(data[3][0])[5]})")
|
249 |
+
|
250 |
+
|
251 |
+
elif option=="about":
|
252 |
+
st.title("Book Recommendation Engine V-2.0")
|
253 |
+
st.markdown("This Engine Developed by <a href='https://github.com/datamind321'>DataMind Platform</a>",unsafe_allow_html=True)
|
254 |
+
st.subheader("if you have any query Contact us on : [email protected]")
|
255 |
+
st.markdown("More on : ")
|
256 |
+
|
257 |
+
|
258 |
+
st.markdown("[](https://www.linkedin.com/in/rahul-rathour-402408231/)",unsafe_allow_html=True)
|
259 |
+
|
260 |
+
|
261 |
+
st.markdown("[](https://instagram.com/_technical__mind?igshid=YmMyMTA2M2Y=)")
|
262 |
+
|
263 |
+
|
books.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:016d6dfd03e12b3ea03e517b958bd9057027c6b4358f171731ce13471e9299de
|
3 |
+
size 71737055
|
final.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eafc2fcb1b9ed77c9c705e150802bc3693300e42dffcc4e028028e9191526940
|
3 |
+
size 194208
|
pt.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9dc904c5ae29c70eedbc05cf3a04bf5a0f5d8b61ec9b8896c3b18169a721af6e
|
3 |
+
size 4601037
|
similarity.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:46ab3e5bb4fdf61ad7306384fc20e4eac45dfc823639b0f78859462d43556edb
|
3 |
+
size 3987651
|