Rajadhurai commited on
Commit
a7818a1
·
verified ·
1 Parent(s): 703bf8f

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -106
app.py DELETED
@@ -1,106 +0,0 @@
1
- import cv2
2
- import mediapipe as mp
3
- import numpy as np
4
- import gradio as gr
5
- import tempfile
6
-
7
- # Load model
8
- MODEL_PATH = "hand_landmarker.task"
9
-
10
- BaseOptions = mp.tasks.BaseOptions
11
- HandLandmarker = mp.tasks.vision.HandLandmarker
12
- HandLandmarkerOptions = mp.tasks.vision.HandLandmarkerOptions
13
- VisionRunningMode = mp.tasks.vision.RunningMode
14
- mp_image = mp.Image
15
- mp_format = mp.ImageFormat
16
-
17
- # Finger connections and colors
18
- HAND_CONNECTIONS = [
19
- (0, 1), (1, 2), (2, 3), (3, 4),
20
- (0, 5), (5, 6), (6, 7), (7, 8),
21
- (0, 9), (9,10), (10,11), (11,12),
22
- (0,13), (13,14), (14,15), (15,16),
23
- (0,17), (17,18), (18,19), (19,20)
24
- ]
25
-
26
- FINGER_COLORS = {
27
- 'thumb': (245, 245, 245),
28
- 'index': (128, 0, 128),
29
- 'middle': (0, 255, 0),
30
- 'ring': (0, 165, 255),
31
- 'pinky': (255, 0, 0),
32
- 'palm': (100, 100, 100)
33
- }
34
-
35
- def get_finger_color(start_idx):
36
- if start_idx in range(0, 5):
37
- return FINGER_COLORS['thumb']
38
- elif start_idx in range(5, 9):
39
- return FINGER_COLORS['index']
40
- elif start_idx in range(9, 13):
41
- return FINGER_COLORS['middle']
42
- elif start_idx in range(13, 17):
43
- return FINGER_COLORS['ring']
44
- elif start_idx in range(17, 21):
45
- return FINGER_COLORS['pinky']
46
- else:
47
- return FINGER_COLORS['palm']
48
-
49
- def process_video(video_path):
50
- cap = cv2.VideoCapture(video_path)
51
-
52
- fourcc = cv2.VideoWriter_fourcc(*'mp4v')
53
- tmp_out = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False)
54
- out_path = tmp_out.name
55
-
56
- fps = cap.get(cv2.CAP_PROP_FPS)
57
- w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
58
- h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
59
- out = cv2.VideoWriter(out_path, fourcc, fps, (w, h))
60
-
61
- options = HandLandmarkerOptions(
62
- base_options=BaseOptions(model_asset_path=MODEL_PATH),
63
- running_mode=VisionRunningMode.IMAGE,
64
- num_hands=2,
65
- min_hand_detection_confidence=0.5,
66
- min_hand_presence_confidence=0.5,
67
- min_tracking_confidence=0.5
68
- )
69
-
70
- with HandLandmarker.create_from_options(options) as landmarker:
71
- while cap.isOpened():
72
- ret, frame = cap.read()
73
- if not ret:
74
- break
75
-
76
- rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
77
- mp_img = mp_image(image_format=mp_format.SRGB, data=rgb_frame)
78
- results = landmarker.detect(mp_img)
79
-
80
- if results.hand_landmarks:
81
- for hand_landmarks in results.hand_landmarks:
82
- points = [(int(lm.x * w), int(lm.y * h)) for lm in hand_landmarks]
83
-
84
- for start, end in HAND_CONNECTIONS:
85
- color = get_finger_color(start)
86
- cv2.line(frame, points[start], points[end], color, 2)
87
-
88
- for i, (x, y) in enumerate(points):
89
- cv2.circle(frame, (x, y), 4, (0, 255, 255), -1)
90
-
91
- out.write(frame)
92
-
93
- cap.release()
94
- out.release()
95
- return out_path
96
-
97
- # Gradio interface
98
- demo = gr.Interface(
99
- fn=process_video,
100
- inputs=gr.Video(label="Upload Video or Use Webcam"),
101
- outputs=gr.Video(label="Hand Landmark Annotated Video"),
102
- title="Hand Detection ",
103
- description="Upload a video or use webcam to detect hands."
104
- )
105
-
106
- demo.launch()