Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,11 +2,9 @@ import cv2
|
|
2 |
import mediapipe as mp
|
3 |
import numpy as np
|
4 |
import gradio as gr
|
5 |
-
import tempfile
|
6 |
|
7 |
-
#
|
8 |
MODEL_PATH = "hand_landmarker.task"
|
9 |
-
|
10 |
BaseOptions = mp.tasks.BaseOptions
|
11 |
HandLandmarker = mp.tasks.vision.HandLandmarker
|
12 |
HandLandmarkerOptions = mp.tasks.vision.HandLandmarkerOptions
|
@@ -46,61 +44,42 @@ def get_finger_color(start_idx):
|
|
46 |
else:
|
47 |
return FINGER_COLORS['palm']
|
48 |
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
58 |
-
h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
59 |
-
out = cv2.VideoWriter(out_path, fourcc, fps, (w, h))
|
60 |
-
|
61 |
-
options = HandLandmarkerOptions(
|
62 |
-
base_options=BaseOptions(model_asset_path=MODEL_PATH),
|
63 |
-
running_mode=VisionRunningMode.IMAGE,
|
64 |
-
num_hands=2,
|
65 |
-
min_hand_detection_confidence=0.5,
|
66 |
-
min_hand_presence_confidence=0.5,
|
67 |
-
min_tracking_confidence=0.5
|
68 |
-
)
|
69 |
-
|
70 |
-
with HandLandmarker.create_from_options(options) as landmarker:
|
71 |
-
while cap.isOpened():
|
72 |
-
ret, frame = cap.read()
|
73 |
-
if not ret:
|
74 |
-
break
|
75 |
-
|
76 |
-
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
77 |
-
mp_img = mp_image(image_format=mp_format.SRGB, data=rgb_frame)
|
78 |
-
results = landmarker.detect(mp_img)
|
79 |
-
|
80 |
-
if results.hand_landmarks:
|
81 |
-
for hand_landmarks in results.hand_landmarks:
|
82 |
-
points = [(int(lm.x * w), int(lm.y * h)) for lm in hand_landmarks]
|
83 |
-
|
84 |
-
for start, end in HAND_CONNECTIONS:
|
85 |
-
color = get_finger_color(start)
|
86 |
-
cv2.line(frame, points[start], points[end], color, 2)
|
87 |
-
|
88 |
-
for i, (x, y) in enumerate(points):
|
89 |
-
cv2.circle(frame, (x, y), 4, (0, 255, 255), -1)
|
90 |
-
|
91 |
-
out.write(frame)
|
92 |
-
|
93 |
-
cap.release()
|
94 |
-
out.release()
|
95 |
-
return out_path
|
96 |
-
|
97 |
-
# Gradio interface
|
98 |
-
demo = gr.Interface(
|
99 |
-
fn=process_video,
|
100 |
-
inputs=gr.Video(label="Upload Video or Use Webcam"),
|
101 |
-
outputs=gr.Video(label="Hand Landmark Annotated Video"),
|
102 |
-
title="Hand Detection ",
|
103 |
-
description="Upload a video or use webcam to detect hands."
|
104 |
)
|
105 |
-
|
106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import mediapipe as mp
|
3 |
import numpy as np
|
4 |
import gradio as gr
|
|
|
5 |
|
6 |
+
# MediaPipe setup
|
7 |
MODEL_PATH = "hand_landmarker.task"
|
|
|
8 |
BaseOptions = mp.tasks.BaseOptions
|
9 |
HandLandmarker = mp.tasks.vision.HandLandmarker
|
10 |
HandLandmarkerOptions = mp.tasks.vision.HandLandmarkerOptions
|
|
|
44 |
else:
|
45 |
return FINGER_COLORS['palm']
|
46 |
|
47 |
+
# Load model only once
|
48 |
+
options = HandLandmarkerOptions(
|
49 |
+
base_options=BaseOptions(model_asset_path=MODEL_PATH),
|
50 |
+
running_mode=VisionRunningMode.IMAGE,
|
51 |
+
num_hands=2,
|
52 |
+
min_hand_detection_confidence=0.5,
|
53 |
+
min_hand_presence_confidence=0.5,
|
54 |
+
min_tracking_confidence=0.5
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
)
|
56 |
+
landmarker = HandLandmarker.create_from_options(options)
|
57 |
+
|
58 |
+
# Main processing function
|
59 |
+
def detect_hand(frame):
|
60 |
+
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
61 |
+
mp_img = mp_image(image_format=mp_format.SRGB, data=rgb_frame)
|
62 |
+
results = landmarker.detect(mp_img)
|
63 |
+
|
64 |
+
h, w, _ = frame.shape
|
65 |
+
if results.hand_landmarks:
|
66 |
+
for hand_landmarks in results.hand_landmarks:
|
67 |
+
points = [(int(lm.x * w), int(lm.y * h)) for lm in hand_landmarks]
|
68 |
+
|
69 |
+
for start, end in HAND_CONNECTIONS:
|
70 |
+
color = get_finger_color(start)
|
71 |
+
cv2.line(frame, points[start], points[end], color, 2)
|
72 |
+
|
73 |
+
for (x, y) in points:
|
74 |
+
cv2.circle(frame, (x, y), 4, (0, 255, 255), -1)
|
75 |
+
|
76 |
+
return frame
|
77 |
+
|
78 |
+
# Gradio UI
|
79 |
+
gr.Interface(
|
80 |
+
fn=detect_hand,
|
81 |
+
inputs=gr.Image(source="webcam", streaming=True, label="Webcam Input"),
|
82 |
+
outputs=gr.Image(label="Annotated Frame"),
|
83 |
+
title="Real-time Hand Detection with MediaPipe",
|
84 |
+
live=True
|
85 |
+
).launch()
|