Rajadhurai commited on
Commit
612b53d
·
verified ·
1 Parent(s): ca25324

uplode test

Browse files
Files changed (1) hide show
  1. test.py +106 -0
test.py ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import mediapipe as mp
3
+ import numpy as np
4
+ import gradio as gr
5
+ import tempfile
6
+
7
+ # Load model
8
+ MODEL_PATH = "hand_landmarker.task"
9
+
10
+ BaseOptions = mp.tasks.BaseOptions
11
+ HandLandmarker = mp.tasks.vision.HandLandmarker
12
+ HandLandmarkerOptions = mp.tasks.vision.HandLandmarkerOptions
13
+ VisionRunningMode = mp.tasks.vision.RunningMode
14
+ mp_image = mp.Image
15
+ mp_format = mp.ImageFormat
16
+
17
+ # Finger connections and colors
18
+ HAND_CONNECTIONS = [
19
+ (0, 1), (1, 2), (2, 3), (3, 4),
20
+ (0, 5), (5, 6), (6, 7), (7, 8),
21
+ (0, 9), (9,10), (10,11), (11,12),
22
+ (0,13), (13,14), (14,15), (15,16),
23
+ (0,17), (17,18), (18,19), (19,20)
24
+ ]
25
+
26
+ FINGER_COLORS = {
27
+ 'thumb': (245, 245, 245),
28
+ 'index': (128, 0, 128),
29
+ 'middle': (0, 255, 0),
30
+ 'ring': (0, 165, 255),
31
+ 'pinky': (255, 0, 0),
32
+ 'palm': (100, 100, 100)
33
+ }
34
+
35
+ def get_finger_color(start_idx):
36
+ if start_idx in range(0, 5):
37
+ return FINGER_COLORS['thumb']
38
+ elif start_idx in range(5, 9):
39
+ return FINGER_COLORS['index']
40
+ elif start_idx in range(9, 13):
41
+ return FINGER_COLORS['middle']
42
+ elif start_idx in range(13, 17):
43
+ return FINGER_COLORS['ring']
44
+ elif start_idx in range(17, 21):
45
+ return FINGER_COLORS['pinky']
46
+ else:
47
+ return FINGER_COLORS['palm']
48
+
49
+ def process_video(video_path):
50
+ cap = cv2.VideoCapture(video_path)
51
+
52
+ fourcc = cv2.VideoWriter_fourcc(*'mp4v')
53
+ tmp_out = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False)
54
+ out_path = tmp_out.name
55
+
56
+ fps = cap.get(cv2.CAP_PROP_FPS)
57
+ w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
58
+ h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
59
+ out = cv2.VideoWriter(out_path, fourcc, fps, (w, h))
60
+
61
+ options = HandLandmarkerOptions(
62
+ base_options=BaseOptions(model_asset_path=MODEL_PATH),
63
+ running_mode=VisionRunningMode.IMAGE,
64
+ num_hands=2,
65
+ min_hand_detection_confidence=0.5,
66
+ min_hand_presence_confidence=0.5,
67
+ min_tracking_confidence=0.5
68
+ )
69
+
70
+ with HandLandmarker.create_from_options(options) as landmarker:
71
+ while cap.isOpened():
72
+ ret, frame = cap.read()
73
+ if not ret:
74
+ break
75
+
76
+ rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
77
+ mp_img = mp_image(image_format=mp_format.SRGB, data=rgb_frame)
78
+ results = landmarker.detect(mp_img)
79
+
80
+ if results.hand_landmarks:
81
+ for hand_landmarks in results.hand_landmarks:
82
+ points = [(int(lm.x * w), int(lm.y * h)) for lm in hand_landmarks]
83
+
84
+ for start, end in HAND_CONNECTIONS:
85
+ color = get_finger_color(start)
86
+ cv2.line(frame, points[start], points[end], color, 2)
87
+
88
+ for i, (x, y) in enumerate(points):
89
+ cv2.circle(frame, (x, y), 4, (0, 255, 255), -1)
90
+
91
+ out.write(frame)
92
+
93
+ cap.release()
94
+ out.release()
95
+ return out_path
96
+
97
+ # Gradio interface
98
+ demo = gr.Interface(
99
+ fn=process_video,
100
+ inputs=gr.Video(label="Upload Video or Use Webcam"),
101
+ outputs=gr.Video(label="Hand Landmark Annotated Video"),
102
+ title="Hand Detection ",
103
+ description="Upload a video or use webcam to detect hands."
104
+ )
105
+
106
+ demo.launch()