Add app.py
Browse files
app.py
ADDED
@@ -0,0 +1,236 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import tempfile
|
3 |
+
|
4 |
+
import gradio as gr
|
5 |
+
import torch
|
6 |
+
from peft import PeftConfig, PeftModel
|
7 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
8 |
+
|
9 |
+
from schema_extractor import SQLiteSchemaExtractor
|
10 |
+
|
11 |
+
|
12 |
+
# Load model and tokenizer
|
13 |
+
def load_model():
|
14 |
+
config = PeftConfig.from_pretrained("Rajan/training_run")
|
15 |
+
tokenizer = AutoTokenizer.from_pretrained("NumbersStation/nsql-350M")
|
16 |
+
base_model = AutoModelForCausalLM.from_pretrained("NumbersStation/nsql-350M")
|
17 |
+
model = PeftModel.from_pretrained(base_model, "Rajan/training_run")
|
18 |
+
return model, tokenizer
|
19 |
+
|
20 |
+
|
21 |
+
# Extract and correct SQL from generated text
|
22 |
+
def extract_and_correct_sql(text, correct=False):
|
23 |
+
lines = text.splitlines()
|
24 |
+
|
25 |
+
start_index = 0
|
26 |
+
for i, line in enumerate(lines):
|
27 |
+
if line.strip().upper().startswith("SELECT"):
|
28 |
+
start_index = i
|
29 |
+
break
|
30 |
+
|
31 |
+
generated_sql = "\n".join(lines[start_index:])
|
32 |
+
|
33 |
+
if correct:
|
34 |
+
if not generated_sql.strip().endswith(";"):
|
35 |
+
generated_sql = generated_sql.strip() + ";"
|
36 |
+
|
37 |
+
return generated_sql
|
38 |
+
|
39 |
+
|
40 |
+
# Function to handle file upload and schema extraction
|
41 |
+
def upload_and_extract_schema(db_file):
|
42 |
+
if db_file is None:
|
43 |
+
return "Please upload a database file", None
|
44 |
+
|
45 |
+
try:
|
46 |
+
# Get the file path directly from Gradio
|
47 |
+
temp_db_path = db_file.name
|
48 |
+
|
49 |
+
extractor = SQLiteSchemaExtractor(temp_db_path)
|
50 |
+
schema = extractor.get_schema()
|
51 |
+
return schema, temp_db_path
|
52 |
+
except Exception as e:
|
53 |
+
return f"Error extracting schema: {str(e)}", None
|
54 |
+
|
55 |
+
|
56 |
+
# Function to handle chat interaction with streaming effect
|
57 |
+
def generate_sql(question, schema, db_path, chat_history):
|
58 |
+
if db_path is None or not schema:
|
59 |
+
return (
|
60 |
+
chat_history
|
61 |
+
+ [
|
62 |
+
{"role": "user", "content": question},
|
63 |
+
{"role": "assistant", "content": "Please upload a database file first"},
|
64 |
+
],
|
65 |
+
None,
|
66 |
+
)
|
67 |
+
|
68 |
+
try:
|
69 |
+
# Load model
|
70 |
+
model, tokenizer = load_model()
|
71 |
+
|
72 |
+
# Format prompt
|
73 |
+
prompt_format = """
|
74 |
+
{}
|
75 |
+
-- Using valid SQLite, answer the following questions for the tables provided above.
|
76 |
+
{}
|
77 |
+
SELECT"""
|
78 |
+
|
79 |
+
# Format the prompt with schema and question
|
80 |
+
prompt = prompt_format.format(schema, question)
|
81 |
+
|
82 |
+
# Generate SQL
|
83 |
+
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
|
84 |
+
generated_ids = model.generate(input_ids, max_length=500)
|
85 |
+
generated_text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
|
86 |
+
|
87 |
+
# Extract SQL
|
88 |
+
sql_query = extract_and_correct_sql(generated_text, correct=True)
|
89 |
+
|
90 |
+
# Update history using dictionary format
|
91 |
+
new_history = chat_history + [
|
92 |
+
{"role": "user", "content": question},
|
93 |
+
{"role": "assistant", "content": sql_query},
|
94 |
+
]
|
95 |
+
return new_history, sql_query
|
96 |
+
except Exception as e:
|
97 |
+
error_message = f"Error: {str(e)}"
|
98 |
+
return (
|
99 |
+
chat_history
|
100 |
+
+ [
|
101 |
+
{"role": "user", "content": question},
|
102 |
+
{"role": "assistant", "content": error_message},
|
103 |
+
],
|
104 |
+
None,
|
105 |
+
)
|
106 |
+
|
107 |
+
|
108 |
+
# Function for streaming SQL generation effect
|
109 |
+
def stream_sql(question, schema, db_path, chat_history):
|
110 |
+
# First add the user message to chat
|
111 |
+
yield chat_history + [{"role": "user", "content": question}], ""
|
112 |
+
|
113 |
+
if db_path is None or not schema:
|
114 |
+
yield chat_history + [
|
115 |
+
{"role": "user", "content": question},
|
116 |
+
{"role": "assistant", "content": "Please upload a database file first"},
|
117 |
+
], "Please upload a database file first"
|
118 |
+
return
|
119 |
+
|
120 |
+
try:
|
121 |
+
# Load model
|
122 |
+
model, tokenizer = load_model()
|
123 |
+
|
124 |
+
# Format prompt
|
125 |
+
prompt_format = """
|
126 |
+
{}
|
127 |
+
-- Using valid SQLite, answer the following questions for the tables provided above.
|
128 |
+
{}
|
129 |
+
SELECT"""
|
130 |
+
|
131 |
+
# Format the prompt with schema and question
|
132 |
+
prompt = prompt_format.format(schema, question)
|
133 |
+
|
134 |
+
# Generate SQL
|
135 |
+
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
|
136 |
+
generated_ids = model.generate(input_ids, max_length=500)
|
137 |
+
generated_text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
|
138 |
+
|
139 |
+
# Extract SQL
|
140 |
+
sql_query = extract_and_correct_sql(generated_text, correct=True)
|
141 |
+
|
142 |
+
# Fixed medium speed (0.03 seconds delay)
|
143 |
+
import time
|
144 |
+
|
145 |
+
delay = 0.03 # 30ms - normal typing speed
|
146 |
+
|
147 |
+
# Stream the SQL query character by character for effect
|
148 |
+
partial_sql = ""
|
149 |
+
for char in sql_query:
|
150 |
+
partial_sql += char
|
151 |
+
# Update chat history and SQL display with each character
|
152 |
+
yield chat_history + [
|
153 |
+
{"role": "user", "content": question},
|
154 |
+
{"role": "assistant", "content": partial_sql},
|
155 |
+
], partial_sql
|
156 |
+
time.sleep(delay) # Medium speed typing effect
|
157 |
+
|
158 |
+
except Exception as e:
|
159 |
+
error_message = f"Error: {str(e)}"
|
160 |
+
yield chat_history + [
|
161 |
+
{"role": "user", "content": question},
|
162 |
+
{"role": "assistant", "content": error_message},
|
163 |
+
], error_message
|
164 |
+
|
165 |
+
|
166 |
+
# Main application
|
167 |
+
def create_app():
|
168 |
+
with gr.Blocks(title="SQL Query Generator", theme=gr.themes.Soft()) as app:
|
169 |
+
gr.Markdown("# SQL Query Generator")
|
170 |
+
gr.Markdown(
|
171 |
+
"Upload a SQLite database, ask questions, and get SQL queries automatically generated"
|
172 |
+
)
|
173 |
+
|
174 |
+
# Store database path
|
175 |
+
db_path = gr.State(value=None)
|
176 |
+
|
177 |
+
with gr.Row():
|
178 |
+
with gr.Column(scale=1):
|
179 |
+
# File upload section
|
180 |
+
file_input = gr.File(label="Upload SQLite Database (.db file)")
|
181 |
+
extract_btn = gr.Button("Extract Schema", variant="primary")
|
182 |
+
|
183 |
+
# Schema display
|
184 |
+
schema_output = gr.Textbox(
|
185 |
+
label="Database Schema", lines=10, interactive=False
|
186 |
+
)
|
187 |
+
|
188 |
+
with gr.Column(scale=2):
|
189 |
+
# Chat interface
|
190 |
+
chatbot = gr.Chatbot(
|
191 |
+
label="Query Conversation", height=400, type="messages"
|
192 |
+
)
|
193 |
+
|
194 |
+
with gr.Row():
|
195 |
+
question_input = gr.Textbox(
|
196 |
+
label="Ask a question about your data",
|
197 |
+
placeholder="e.g., Show me the top 10 most sold items",
|
198 |
+
)
|
199 |
+
submit_btn = gr.Button("Generate SQL", variant="primary")
|
200 |
+
|
201 |
+
# SQL output display
|
202 |
+
sql_output = gr.Code(
|
203 |
+
language="sql", label="Generated SQL Query", interactive=False
|
204 |
+
)
|
205 |
+
|
206 |
+
# Event handlers
|
207 |
+
extract_btn.click(
|
208 |
+
fn=upload_and_extract_schema,
|
209 |
+
inputs=[file_input],
|
210 |
+
outputs=[schema_output, db_path],
|
211 |
+
)
|
212 |
+
|
213 |
+
submit_btn.click(
|
214 |
+
fn=stream_sql,
|
215 |
+
inputs=[question_input, schema_output, db_path, chatbot],
|
216 |
+
outputs=[chatbot, sql_output],
|
217 |
+
api_name="generate",
|
218 |
+
queue=True,
|
219 |
+
)
|
220 |
+
|
221 |
+
# Also trigger on enter key
|
222 |
+
question_input.submit(
|
223 |
+
fn=stream_sql,
|
224 |
+
inputs=[question_input, schema_output, db_path, chatbot],
|
225 |
+
outputs=[chatbot, sql_output],
|
226 |
+
api_name="generate_on_submit",
|
227 |
+
queue=True,
|
228 |
+
)
|
229 |
+
|
230 |
+
return app
|
231 |
+
|
232 |
+
|
233 |
+
# Launch the app
|
234 |
+
if __name__ == "__main__":
|
235 |
+
app = create_app()
|
236 |
+
app.launch(share=True)
|