Spaces:
Build error
Build error
from llama_index.core import VectorStoreIndex | |
from llama_index.vector_stores.pinecone import PineconeVectorStore | |
from pinecone import Pinecone | |
from research_assistant_app.constants import gemini_api_key, pinecone_api_key | |
import google.generativeai as genai | |
pc = Pinecone(api_key=pinecone_api_key) | |
pinecone_index = pc.Index( | |
"ai-research-assistant" | |
) # `ai-research-assistant` is the index name | |
vector_store = PineconeVectorStore(pinecone_index=pinecone_index) | |
from llama_index.core.retrievers import VectorIndexRetriever | |
from llama_index.core.query_engine import RetrieverQueryEngine | |
from llama_index.core import PromptTemplate | |
def get_vector_retriever(Pinecone_vector_store): | |
# Instantiate VectorStoreIndex object from your vector_store object | |
vector_index = VectorStoreIndex.from_vector_store( | |
vector_store=Pinecone_vector_store | |
) | |
print(vector_index, "check indexes") | |
# Grab 5 search results | |
retriever = VectorIndexRetriever(index=vector_index, similarity_top_k=5) | |
# Pass in your retriever from above, which is configured to return the top 5 results | |
query_engine = RetrieverQueryEngine(retriever=retriever) | |
return query_engine, vector_index | |
def get_full_prompt_template(cur_instr: str, prompt_tmpl): | |
tmpl_str = prompt_tmpl.get_template() | |
new_tmpl_str = cur_instr + "\n" + tmpl_str | |
new_tmpl = PromptTemplate(new_tmpl_str) | |
return new_tmpl | |
def proper_prompting(my_query_enginge, my_vector_index): | |
QA_PROMPT_KEY = "response_synthesizer:text_qa_template" | |
# get the base qa prompt (without any instruction prefix) | |
base_qa_prompt = my_query_enginge.get_prompts()[QA_PROMPT_KEY] | |
initial_instr = """\ | |
You are a QA assistant specifically designed to help in reaserch work as and research assistant. | |
--------------------- | |
Context information is below. Given the context information and not prior knowledge, \ | |
"{context_str}\n" | |
--------------------- | |
answer the query. \ | |
It is very important that If the context is not relevant, | |
please answer the question by using your own knowledge about the topic | |
""" | |
# this is the "initial" prompt template | |
# implicitly used in the first stage of the loop during prompt optimization | |
# here we explicitly capture it so we can use it for evaluation | |
old_qa_prompt = get_full_prompt_template(initial_instr, base_qa_prompt) | |
old_qa_prompt | |
# Use the custom prompt when querying | |
# genai.configure(api_key=gemini_api_key) | |
query_engine = my_vector_index.as_query_engine(text_qa_template=old_qa_prompt) | |
return query_engine | |
## This will be the main function that we would call for querying | |
def user_query(qus): | |
genai.configure(api_key=gemini_api_key) | |
my_query_enginge, my_vector_index = get_vector_retriever(vector_store) | |
query_engine = proper_prompting(my_query_enginge, my_vector_index) | |
response = query_engine.query(qus) | |
return response.response | |