Spaces:
Runtime error
Runtime error
File size: 7,845 Bytes
e131099 13bf6a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
from flask import Flask, render_template, request, redirect, url_for, jsonify
from tensorflow.keras.models import load_model
import numpy as np
import joblib
import pandas as pd
import io
import requests
import threading
import time
from PIL import Image # Import for image processing
app = Flask(__name__)
# Load models
pump_model = joblib.load('pump_status_dt_model.pkl')
soil_model = load_model('soil_classification_model.h5')
# Dictionaries for crop types, regions, etc.
crop_types = {'BANANA': 0, 'BEAN': 1, 'CABBAGE': 2, 'CITRUS': 3, 'COTTON': 4,
'MAIZE': 5, 'MELON': 6, 'MUSTARD': 7, 'ONION': 8, 'OTHER': 9,
'POTATO': 10, 'RICE': 11, 'SOYABEAN': 12, 'SUGARCANE': 13,
'TOMATO': 14, 'WHEAT': 15}
soil_types = {'DRY': 0, 'HUMID': 1, 'WET': 2}
regions = {'DESERT': 0, 'HUMID': 1, 'SEMI ARID': 2, 'SEMI HUMID': 3}
weather_conditions = {'SUNNY': 0, 'RAINY': 1, 'WINDY': 2, 'NORMAL': 3}
irrigation_types = {'Drip Irrigation': 0, 'Manual Irrigation': 1,
'Sprinkler Irrigation': 2, 'Subsurface Irrigation': 3,
'Surface Irrigation': 4}
soil_labels = {1: 'Black Soil', 2: 'Clay Soil', 0: 'Alluvial Soil', 3: 'Red Soil'}
# Global variables
soil_moisture_data = []
pump_status = "Off"
previous_pump_status = "Off"
graph_data = []
# Function to fetch weather data
def get_weather(city):
api_key=os.getenv('WEATHER_API')
api_key = api_key
url = f"https://api.openweathermap.org/data/2.5/weather?q={city}&appid={api_key}&units=metric"
try:
response = requests.get(url)
response.raise_for_status()
data = response.json()
temp = data['main']['temp']
pressure = data['main']['pressure']
humidity = data['main']['humidity']
weather_desc = data['weather'][0]['main']
return temp, pressure, humidity, weather_desc
except requests.exceptions.HTTPError:
return None, None, None, None
# Function to map soil type to pump model's expected format
def map_soil_to_pump_model(soil_label):
if soil_label in ['Black Soil', 'Red Soil']:
return 'DRY'
elif soil_label == 'Clay Soil':
return 'WET'
elif soil_label == 'Alluvial Soil':
return 'HUMID'
return None
# Function to run predictions for all soil moisture values
# Function to run predictions for all soil moisture values
def run_predictions(crop_type, soil_type_for_pump, region, temperature, pressure, humidity, crop_age, irrigation_type, auto_weather_condition):
global pump_status, graph_data, previous_pump_status
pump_status = "Off"
previous_pump_status = "Off"
graph_data = []
for soil_moisture in soil_moisture_data:
try:
soil_moisture_value = float(soil_moisture) # Ensure this is a float
except ValueError:
print(f"Skipping invalid soil moisture value: {soil_moisture}")
continue
# Prepare features for pump prediction
features = np.array([crop_types[crop_type], soil_types[soil_type_for_pump],
regions[region], temperature if temperature else 0,
weather_conditions.get(auto_weather_condition, 0),
pressure if pressure else 0, humidity if humidity else 0,
int(crop_age), irrigation_types[irrigation_type],
soil_moisture_value]).reshape(1, -1)
# Make the pump prediction
pump_prediction = pump_model.predict(features)
pump_status = 'On' if pump_prediction[0] == 1 else 'Off'
graph_data.append((soil_moisture_value, 1 if pump_status == 'On' else -1)) # Update status to -1 for Off
print(f"Predicted Pump Status: {pump_status} for Soil Moisture: {soil_moisture_value}") # Debugging output
# Play sound if pump is Off and it wasn't Off previously
if pump_status == "Off" and previous_pump_status != "Off":
play_sound()
previous_pump_status = pump_status
# Wait for 1 second before next prediction
time.sleep(2)
def play_sound():
# You can use any sound file here
print("Beep! Pump is Off.") # Placeholder for actual sound functionality
# Main route
@app.route('/', methods=['GET', 'POST'])
def index():
global soil_moisture_data
city = crop_type = region = crop_age = irrigation_type = None
temperature = pressure = humidity = weather_desc = auto_weather_condition = None
soil_image_url = None
if request.method == 'POST':
city = request.form.get('city', '')
crop_type = request.form.get('crop_type', '')
region = request.form.get('region', '')
crop_age = request.form.get('crop_age', '')
irrigation_type = request.form.get('irrigation_type', '')
# Handle CSV file upload
if 'soil_moisture' in request.files:
soil_moisture_file = request.files['soil_moisture']
if soil_moisture_file:
# Read CSV file
df = pd.read_csv(soil_moisture_file)
soil_moisture_data = df['Soil Moisture'].tolist()
# Handle soil image upload
soil_image_file = request.files.get('soil_image')
if soil_image_file:
# Load and preprocess the image for prediction
image = Image.open(io.BytesIO(soil_image_file.read()))
image = image.resize((150, 150))
image = np.array(image) / 255.0
if image.shape[-1] == 4:
image = image[..., :3]
image = np.expand_dims(image, axis=0)
# Predict the soil type
soil_pred = soil_model.predict(image)
soil_label = soil_labels[np.argmax(soil_pred)]
soil_type_for_pump = map_soil_to_pump_model(soil_label)
else:
soil_type_for_pump = request.form.get('soil_type')
if city:
temperature, pressure, humidity, weather_desc = get_weather(city)
auto_weather_condition = "NORMAL" # Default weather condition
if weather_desc:
if 'sunny' in weather_desc.lower():
auto_weather_condition = 'SUNNY'
elif 'rain' in weather_desc.lower():
auto_weather_condition = 'RAINY'
elif 'wind' in weather_desc.lower():
auto_weather_condition = 'WINDY'
if 'predict' in request.form:
# Start a thread for predictions
threading.Thread(target=run_predictions, args=(
crop_type, soil_type_for_pump, region, temperature, pressure, humidity, crop_age, irrigation_type, auto_weather_condition)).start()
return redirect(url_for('predict'))
return render_template('index.html', temperature=temperature, pressure=pressure,
humidity=humidity, weather_desc=weather_desc, crop_types=crop_types,
regions=regions, irrigation_types=irrigation_types, soil_types=soil_types,
crop_type=crop_type, region=region, crop_age=crop_age,
irrigation_type=irrigation_type, city=city, soil_image_url=soil_image_url)
# Prediction route
@app.route('/predict', methods=['GET'])
def predict():
global pump_status, graph_data
return render_template('predict.html', pump_status=pump_status, graph_data=graph_data)
# Update graph data every second
@app.route('/update_graph', methods=['GET'])
def update_graph():
global graph_data
return jsonify(graph_data)
# Update pump status every second
@app.route('/update_pump_status', methods=['GET'])
def update_pump_status():
global pump_status
return jsonify({'pump_status': pump_status})
if __name__ == '__main__':
app.run(debug=True,port=5700,host='0.0.0.0')
|