File size: 5,779 Bytes
e3278e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
from typing import Optional, Union

import litellm

from ..exceptions import UnsupportedParamsError
from ..types.llms.openai import *


def get_optional_params_add_message(
    role: Optional[str],
    content: Optional[
        Union[
            str,
            List[
                Union[
                    MessageContentTextObject,
                    MessageContentImageFileObject,
                    MessageContentImageURLObject,
                ]
            ],
        ]
    ],
    attachments: Optional[List[Attachment]],
    metadata: Optional[dict],
    custom_llm_provider: str,
    **kwargs,
):
    """
    Azure doesn't support 'attachments' for creating a message

    Reference - https://learn.microsoft.com/en-us/azure/ai-services/openai/assistants-reference-messages?tabs=python#create-message
    """
    passed_params = locals()
    custom_llm_provider = passed_params.pop("custom_llm_provider")
    special_params = passed_params.pop("kwargs")
    for k, v in special_params.items():
        passed_params[k] = v

    default_params = {
        "role": None,
        "content": None,
        "attachments": None,
        "metadata": None,
    }

    non_default_params = {
        k: v
        for k, v in passed_params.items()
        if (k in default_params and v != default_params[k])
    }
    optional_params = {}

    ## raise exception if non-default value passed for non-openai/azure embedding calls
    def _check_valid_arg(supported_params):
        if len(non_default_params.keys()) > 0:
            keys = list(non_default_params.keys())
            for k in keys:
                if (
                    litellm.drop_params is True and k not in supported_params
                ):  # drop the unsupported non-default values
                    non_default_params.pop(k, None)
                elif k not in supported_params:
                    raise litellm.utils.UnsupportedParamsError(
                        status_code=500,
                        message="k={}, not supported by {}. Supported params={}. To drop it from the call, set `litellm.drop_params = True`.".format(
                            k, custom_llm_provider, supported_params
                        ),
                    )
            return non_default_params

    if custom_llm_provider == "openai":
        optional_params = non_default_params
    elif custom_llm_provider == "azure":
        supported_params = (
            litellm.AzureOpenAIAssistantsAPIConfig().get_supported_openai_create_message_params()
        )
        _check_valid_arg(supported_params=supported_params)
        optional_params = litellm.AzureOpenAIAssistantsAPIConfig().map_openai_params_create_message_params(
            non_default_params=non_default_params, optional_params=optional_params
        )
    for k in passed_params.keys():
        if k not in default_params.keys():
            optional_params[k] = passed_params[k]
    return optional_params


def get_optional_params_image_gen(
    n: Optional[int] = None,
    quality: Optional[str] = None,
    response_format: Optional[str] = None,
    size: Optional[str] = None,
    style: Optional[str] = None,
    user: Optional[str] = None,
    custom_llm_provider: Optional[str] = None,
    **kwargs,
):
    # retrieve all parameters passed to the function
    passed_params = locals()
    custom_llm_provider = passed_params.pop("custom_llm_provider")
    special_params = passed_params.pop("kwargs")
    for k, v in special_params.items():
        passed_params[k] = v

    default_params = {
        "n": None,
        "quality": None,
        "response_format": None,
        "size": None,
        "style": None,
        "user": None,
    }

    non_default_params = {
        k: v
        for k, v in passed_params.items()
        if (k in default_params and v != default_params[k])
    }
    optional_params = {}

    ## raise exception if non-default value passed for non-openai/azure embedding calls
    def _check_valid_arg(supported_params):
        if len(non_default_params.keys()) > 0:
            keys = list(non_default_params.keys())
            for k in keys:
                if (
                    litellm.drop_params is True and k not in supported_params
                ):  # drop the unsupported non-default values
                    non_default_params.pop(k, None)
                elif k not in supported_params:
                    raise UnsupportedParamsError(
                        status_code=500,
                        message=f"Setting user/encoding format is not supported by {custom_llm_provider}. To drop it from the call, set `litellm.drop_params = True`.",
                    )
            return non_default_params

    if (
        custom_llm_provider == "openai"
        or custom_llm_provider == "azure"
        or custom_llm_provider in litellm.openai_compatible_providers
    ):
        optional_params = non_default_params
    elif custom_llm_provider == "bedrock":
        supported_params = ["size"]
        _check_valid_arg(supported_params=supported_params)
        if size is not None:
            width, height = size.split("x")
            optional_params["width"] = int(width)
            optional_params["height"] = int(height)
    elif custom_llm_provider == "vertex_ai":
        supported_params = ["n"]
        """
        All params here: https://console.cloud.google.com/vertex-ai/publishers/google/model-garden/imagegeneration?project=adroit-crow-413218
        """
        _check_valid_arg(supported_params=supported_params)
        if n is not None:
            optional_params["sampleCount"] = int(n)

    for k in passed_params.keys():
        if k not in default_params.keys():
            optional_params[k] = passed_params[k]
    return optional_params