File size: 27,965 Bytes
e3278e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
"""
Calling + translation logic for anthropic's `/v1/messages` endpoint
"""

import copy
import json
from typing import Any, Callable, List, Optional, Tuple, Union

import httpx  # type: ignore

import litellm
import litellm.litellm_core_utils
import litellm.types
import litellm.types.utils
from litellm import LlmProviders
from litellm.litellm_core_utils.core_helpers import map_finish_reason
from litellm.llms.base_llm.chat.transformation import BaseConfig
from litellm.llms.custom_httpx.http_handler import (
    AsyncHTTPHandler,
    HTTPHandler,
    get_async_httpx_client,
)
from litellm.types.llms.anthropic import (
    AnthropicChatCompletionUsageBlock,
    ContentBlockDelta,
    ContentBlockStart,
    ContentBlockStop,
    MessageBlockDelta,
    MessageStartBlock,
    UsageDelta,
)
from litellm.types.llms.openai import (
    ChatCompletionToolCallChunk,
    ChatCompletionUsageBlock,
)
from litellm.types.utils import GenericStreamingChunk
from litellm.utils import CustomStreamWrapper, ModelResponse, ProviderConfigManager

from ...base import BaseLLM
from ..common_utils import AnthropicError, process_anthropic_headers
from .transformation import AnthropicConfig


async def make_call(
    client: Optional[AsyncHTTPHandler],
    api_base: str,
    headers: dict,
    data: str,
    model: str,
    messages: list,
    logging_obj,
    timeout: Optional[Union[float, httpx.Timeout]],
    json_mode: bool,
) -> Tuple[Any, httpx.Headers]:
    if client is None:
        client = litellm.module_level_aclient

    try:
        response = await client.post(
            api_base, headers=headers, data=data, stream=True, timeout=timeout
        )
    except httpx.HTTPStatusError as e:
        error_headers = getattr(e, "headers", None)
        error_response = getattr(e, "response", None)
        if error_headers is None and error_response:
            error_headers = getattr(error_response, "headers", None)
        raise AnthropicError(
            status_code=e.response.status_code,
            message=await e.response.aread(),
            headers=error_headers,
        )
    except Exception as e:
        for exception in litellm.LITELLM_EXCEPTION_TYPES:
            if isinstance(e, exception):
                raise e
        raise AnthropicError(status_code=500, message=str(e))

    completion_stream = ModelResponseIterator(
        streaming_response=response.aiter_lines(),
        sync_stream=False,
        json_mode=json_mode,
    )

    # LOGGING
    logging_obj.post_call(
        input=messages,
        api_key="",
        original_response=completion_stream,  # Pass the completion stream for logging
        additional_args={"complete_input_dict": data},
    )

    return completion_stream, response.headers


def make_sync_call(
    client: Optional[HTTPHandler],
    api_base: str,
    headers: dict,
    data: str,
    model: str,
    messages: list,
    logging_obj,
    timeout: Optional[Union[float, httpx.Timeout]],
    json_mode: bool,
) -> Tuple[Any, httpx.Headers]:
    if client is None:
        client = litellm.module_level_client  # re-use a module level client

    try:
        response = client.post(
            api_base, headers=headers, data=data, stream=True, timeout=timeout
        )
    except httpx.HTTPStatusError as e:
        error_headers = getattr(e, "headers", None)
        error_response = getattr(e, "response", None)
        if error_headers is None and error_response:
            error_headers = getattr(error_response, "headers", None)
        raise AnthropicError(
            status_code=e.response.status_code,
            message=e.response.read(),
            headers=error_headers,
        )
    except Exception as e:
        for exception in litellm.LITELLM_EXCEPTION_TYPES:
            if isinstance(e, exception):
                raise e
        raise AnthropicError(status_code=500, message=str(e))

    if response.status_code != 200:
        response_headers = getattr(response, "headers", None)
        raise AnthropicError(
            status_code=response.status_code,
            message=response.read(),
            headers=response_headers,
        )

    completion_stream = ModelResponseIterator(
        streaming_response=response.iter_lines(), sync_stream=True, json_mode=json_mode
    )

    # LOGGING
    logging_obj.post_call(
        input=messages,
        api_key="",
        original_response="first stream response received",
        additional_args={"complete_input_dict": data},
    )

    return completion_stream, response.headers


class AnthropicChatCompletion(BaseLLM):
    def __init__(self) -> None:
        super().__init__()

    async def acompletion_stream_function(
        self,
        model: str,
        messages: list,
        api_base: str,
        custom_prompt_dict: dict,
        model_response: ModelResponse,
        print_verbose: Callable,
        timeout: Union[float, httpx.Timeout],
        client: Optional[AsyncHTTPHandler],
        encoding,
        api_key,
        logging_obj,
        stream,
        _is_function_call,
        data: dict,
        json_mode: bool,
        optional_params=None,
        litellm_params=None,
        logger_fn=None,
        headers={},
    ):
        data["stream"] = True

        completion_stream, headers = await make_call(
            client=client,
            api_base=api_base,
            headers=headers,
            data=json.dumps(data),
            model=model,
            messages=messages,
            logging_obj=logging_obj,
            timeout=timeout,
            json_mode=json_mode,
        )
        streamwrapper = CustomStreamWrapper(
            completion_stream=completion_stream,
            model=model,
            custom_llm_provider="anthropic",
            logging_obj=logging_obj,
            _response_headers=process_anthropic_headers(headers),
        )
        return streamwrapper

    async def acompletion_function(
        self,
        model: str,
        messages: list,
        api_base: str,
        custom_prompt_dict: dict,
        model_response: ModelResponse,
        print_verbose: Callable,
        timeout: Union[float, httpx.Timeout],
        encoding,
        api_key,
        logging_obj,
        stream,
        _is_function_call,
        data: dict,
        optional_params: dict,
        json_mode: bool,
        litellm_params: dict,
        provider_config: BaseConfig,
        logger_fn=None,
        headers={},
        client: Optional[AsyncHTTPHandler] = None,
    ) -> Union[ModelResponse, CustomStreamWrapper]:
        async_handler = client or get_async_httpx_client(
            llm_provider=litellm.LlmProviders.ANTHROPIC
        )

        try:
            response = await async_handler.post(
                api_base, headers=headers, json=data, timeout=timeout
            )
        except Exception as e:
            ## LOGGING
            logging_obj.post_call(
                input=messages,
                api_key=api_key,
                original_response=str(e),
                additional_args={"complete_input_dict": data},
            )
            status_code = getattr(e, "status_code", 500)
            error_headers = getattr(e, "headers", None)
            error_text = getattr(e, "text", str(e))
            error_response = getattr(e, "response", None)
            if error_headers is None and error_response:
                error_headers = getattr(error_response, "headers", None)
            if error_response and hasattr(error_response, "text"):
                error_text = getattr(error_response, "text", error_text)
            raise AnthropicError(
                message=error_text,
                status_code=status_code,
                headers=error_headers,
            )

        return provider_config.transform_response(
            model=model,
            raw_response=response,
            model_response=model_response,
            logging_obj=logging_obj,
            api_key=api_key,
            request_data=data,
            messages=messages,
            optional_params=optional_params,
            litellm_params=litellm_params,
            encoding=encoding,
            json_mode=json_mode,
        )

    def completion(
        self,
        model: str,
        messages: list,
        api_base: str,
        custom_llm_provider: str,
        custom_prompt_dict: dict,
        model_response: ModelResponse,
        print_verbose: Callable,
        encoding,
        api_key,
        logging_obj,
        optional_params: dict,
        timeout: Union[float, httpx.Timeout],
        litellm_params: dict,
        acompletion=None,
        logger_fn=None,
        headers={},
        client=None,
    ):

        optional_params = copy.deepcopy(optional_params)
        stream = optional_params.pop("stream", None)
        json_mode: bool = optional_params.pop("json_mode", False)
        is_vertex_request: bool = optional_params.pop("is_vertex_request", False)
        _is_function_call = False
        messages = copy.deepcopy(messages)
        headers = AnthropicConfig().validate_environment(
            api_key=api_key,
            headers=headers,
            model=model,
            messages=messages,
            optional_params={**optional_params, "is_vertex_request": is_vertex_request},
        )

        config = ProviderConfigManager.get_provider_chat_config(
            model=model,
            provider=LlmProviders(custom_llm_provider),
        )

        data = config.transform_request(
            model=model,
            messages=messages,
            optional_params=optional_params,
            litellm_params=litellm_params,
            headers=headers,
        )

        ## LOGGING
        logging_obj.pre_call(
            input=messages,
            api_key=api_key,
            additional_args={
                "complete_input_dict": data,
                "api_base": api_base,
                "headers": headers,
            },
        )
        print_verbose(f"_is_function_call: {_is_function_call}")
        if acompletion is True:
            if (
                stream is True
            ):  # if function call - fake the streaming (need complete blocks for output parsing in openai format)
                print_verbose("makes async anthropic streaming POST request")
                data["stream"] = stream
                return self.acompletion_stream_function(
                    model=model,
                    messages=messages,
                    data=data,
                    api_base=api_base,
                    custom_prompt_dict=custom_prompt_dict,
                    model_response=model_response,
                    print_verbose=print_verbose,
                    encoding=encoding,
                    api_key=api_key,
                    logging_obj=logging_obj,
                    optional_params=optional_params,
                    stream=stream,
                    _is_function_call=_is_function_call,
                    json_mode=json_mode,
                    litellm_params=litellm_params,
                    logger_fn=logger_fn,
                    headers=headers,
                    timeout=timeout,
                    client=(
                        client
                        if client is not None and isinstance(client, AsyncHTTPHandler)
                        else None
                    ),
                )
            else:
                return self.acompletion_function(
                    model=model,
                    messages=messages,
                    data=data,
                    api_base=api_base,
                    custom_prompt_dict=custom_prompt_dict,
                    model_response=model_response,
                    print_verbose=print_verbose,
                    encoding=encoding,
                    api_key=api_key,
                    provider_config=config,
                    logging_obj=logging_obj,
                    optional_params=optional_params,
                    stream=stream,
                    _is_function_call=_is_function_call,
                    litellm_params=litellm_params,
                    logger_fn=logger_fn,
                    headers=headers,
                    client=client,
                    json_mode=json_mode,
                    timeout=timeout,
                )
        else:
            ## COMPLETION CALL
            if (
                stream is True
            ):  # if function call - fake the streaming (need complete blocks for output parsing in openai format)
                data["stream"] = stream
                completion_stream, headers = make_sync_call(
                    client=client,
                    api_base=api_base,
                    headers=headers,  # type: ignore
                    data=json.dumps(data),
                    model=model,
                    messages=messages,
                    logging_obj=logging_obj,
                    timeout=timeout,
                    json_mode=json_mode,
                )
                return CustomStreamWrapper(
                    completion_stream=completion_stream,
                    model=model,
                    custom_llm_provider="anthropic",
                    logging_obj=logging_obj,
                    _response_headers=process_anthropic_headers(headers),
                )

            else:
                if client is None or not isinstance(client, HTTPHandler):
                    client = HTTPHandler(timeout=timeout)  # type: ignore
                else:
                    client = client

                try:
                    response = client.post(
                        api_base,
                        headers=headers,
                        data=json.dumps(data),
                        timeout=timeout,
                    )
                except Exception as e:
                    status_code = getattr(e, "status_code", 500)
                    error_headers = getattr(e, "headers", None)
                    error_text = getattr(e, "text", str(e))
                    error_response = getattr(e, "response", None)
                    if error_headers is None and error_response:
                        error_headers = getattr(error_response, "headers", None)
                    if error_response and hasattr(error_response, "text"):
                        error_text = getattr(error_response, "text", error_text)
                    raise AnthropicError(
                        message=error_text,
                        status_code=status_code,
                        headers=error_headers,
                    )

        return config.transform_response(
            model=model,
            raw_response=response,
            model_response=model_response,
            logging_obj=logging_obj,
            api_key=api_key,
            request_data=data,
            messages=messages,
            optional_params=optional_params,
            litellm_params=litellm_params,
            encoding=encoding,
            json_mode=json_mode,
        )

    def embedding(self):
        # logic for parsing in - calling - parsing out model embedding calls
        pass


class ModelResponseIterator:
    def __init__(
        self, streaming_response, sync_stream: bool, json_mode: Optional[bool] = False
    ):
        self.streaming_response = streaming_response
        self.response_iterator = self.streaming_response
        self.content_blocks: List[ContentBlockDelta] = []
        self.tool_index = -1
        self.json_mode = json_mode

    def check_empty_tool_call_args(self) -> bool:
        """
        Check if the tool call block so far has been an empty string
        """
        args = ""
        # if text content block -> skip
        if len(self.content_blocks) == 0:
            return False

        if self.content_blocks[0]["delta"]["type"] == "text_delta":
            return False

        for block in self.content_blocks:
            if block["delta"]["type"] == "input_json_delta":
                args += block["delta"].get("partial_json", "")  # type: ignore

        if len(args) == 0:
            return True
        return False

    def _handle_usage(
        self, anthropic_usage_chunk: Union[dict, UsageDelta]
    ) -> AnthropicChatCompletionUsageBlock:

        usage_block = AnthropicChatCompletionUsageBlock(
            prompt_tokens=anthropic_usage_chunk.get("input_tokens", 0),
            completion_tokens=anthropic_usage_chunk.get("output_tokens", 0),
            total_tokens=anthropic_usage_chunk.get("input_tokens", 0)
            + anthropic_usage_chunk.get("output_tokens", 0),
        )

        cache_creation_input_tokens = anthropic_usage_chunk.get(
            "cache_creation_input_tokens"
        )
        if cache_creation_input_tokens is not None and isinstance(
            cache_creation_input_tokens, int
        ):
            usage_block["cache_creation_input_tokens"] = cache_creation_input_tokens

        cache_read_input_tokens = anthropic_usage_chunk.get("cache_read_input_tokens")
        if cache_read_input_tokens is not None and isinstance(
            cache_read_input_tokens, int
        ):
            usage_block["cache_read_input_tokens"] = cache_read_input_tokens

        return usage_block

    def chunk_parser(self, chunk: dict) -> GenericStreamingChunk:
        try:
            type_chunk = chunk.get("type", "") or ""

            text = ""
            tool_use: Optional[ChatCompletionToolCallChunk] = None
            is_finished = False
            finish_reason = ""
            usage: Optional[ChatCompletionUsageBlock] = None

            index = int(chunk.get("index", 0))
            if type_chunk == "content_block_delta":
                """
                Anthropic content chunk
                chunk = {'type': 'content_block_delta', 'index': 0, 'delta': {'type': 'text_delta', 'text': 'Hello'}}
                """
                content_block = ContentBlockDelta(**chunk)  # type: ignore
                self.content_blocks.append(content_block)
                if "text" in content_block["delta"]:
                    text = content_block["delta"]["text"]
                elif "partial_json" in content_block["delta"]:
                    tool_use = {
                        "id": None,
                        "type": "function",
                        "function": {
                            "name": None,
                            "arguments": content_block["delta"]["partial_json"],
                        },
                        "index": self.tool_index,
                    }
            elif type_chunk == "content_block_start":
                """
                event: content_block_start
                data: {"type":"content_block_start","index":1,"content_block":{"type":"tool_use","id":"toolu_01T1x1fJ34qAmk2tNTrN7Up6","name":"get_weather","input":{}}}
                """
                content_block_start = ContentBlockStart(**chunk)  # type: ignore
                self.content_blocks = []  # reset content blocks when new block starts
                if content_block_start["content_block"]["type"] == "text":
                    text = content_block_start["content_block"]["text"]
                elif content_block_start["content_block"]["type"] == "tool_use":
                    self.tool_index += 1
                    tool_use = {
                        "id": content_block_start["content_block"]["id"],
                        "type": "function",
                        "function": {
                            "name": content_block_start["content_block"]["name"],
                            "arguments": "",
                        },
                        "index": self.tool_index,
                    }
            elif type_chunk == "content_block_stop":
                ContentBlockStop(**chunk)  # type: ignore
                # check if tool call content block
                is_empty = self.check_empty_tool_call_args()
                if is_empty:
                    tool_use = {
                        "id": None,
                        "type": "function",
                        "function": {
                            "name": None,
                            "arguments": "{}",
                        },
                        "index": self.tool_index,
                    }
            elif type_chunk == "message_delta":
                """
                Anthropic
                chunk = {'type': 'message_delta', 'delta': {'stop_reason': 'max_tokens', 'stop_sequence': None}, 'usage': {'output_tokens': 10}}
                """
                # TODO - get usage from this chunk, set in response
                message_delta = MessageBlockDelta(**chunk)  # type: ignore
                finish_reason = map_finish_reason(
                    finish_reason=message_delta["delta"].get("stop_reason", "stop")
                    or "stop"
                )
                usage = self._handle_usage(anthropic_usage_chunk=message_delta["usage"])
                is_finished = True
            elif type_chunk == "message_start":
                """
                Anthropic
                chunk = {
                    "type": "message_start",
                    "message": {
                        "id": "msg_vrtx_011PqREFEMzd3REdCoUFAmdG",
                        "type": "message",
                        "role": "assistant",
                        "model": "claude-3-sonnet-20240229",
                        "content": [],
                        "stop_reason": null,
                        "stop_sequence": null,
                        "usage": {
                            "input_tokens": 270,
                            "output_tokens": 1
                        }
                    }
                }
                """
                message_start_block = MessageStartBlock(**chunk)  # type: ignore
                if "usage" in message_start_block["message"]:
                    usage = self._handle_usage(
                        anthropic_usage_chunk=message_start_block["message"]["usage"]
                    )
            elif type_chunk == "error":
                """
                {"type":"error","error":{"details":null,"type":"api_error","message":"Internal server error"}      }
                """
                _error_dict = chunk.get("error", {}) or {}
                message = _error_dict.get("message", None) or str(chunk)
                raise AnthropicError(
                    message=message,
                    status_code=500,  # it looks like Anthropic API does not return a status code in the chunk error - default to 500
                )

            text, tool_use = self._handle_json_mode_chunk(text=text, tool_use=tool_use)

            returned_chunk = GenericStreamingChunk(
                text=text,
                tool_use=tool_use,
                is_finished=is_finished,
                finish_reason=finish_reason,
                usage=usage,
                index=index,
            )

            return returned_chunk

        except json.JSONDecodeError:
            raise ValueError(f"Failed to decode JSON from chunk: {chunk}")

    def _handle_json_mode_chunk(
        self, text: str, tool_use: Optional[ChatCompletionToolCallChunk]
    ) -> Tuple[str, Optional[ChatCompletionToolCallChunk]]:
        """
        If JSON mode is enabled, convert the tool call to a message.

        Anthropic returns the JSON schema as part of the tool call
        OpenAI returns the JSON schema as part of the content, this handles placing it in the content

        Args:
            text: str
            tool_use: Optional[ChatCompletionToolCallChunk]
        Returns:
            Tuple[str, Optional[ChatCompletionToolCallChunk]]

            text: The text to use in the content
            tool_use: The ChatCompletionToolCallChunk to use in the chunk response
        """
        if self.json_mode is True and tool_use is not None:
            message = AnthropicConfig._convert_tool_response_to_message(
                tool_calls=[tool_use]
            )
            if message is not None:
                text = message.content or ""
                tool_use = None

        return text, tool_use

    # Sync iterator
    def __iter__(self):
        return self

    def __next__(self):
        try:
            chunk = self.response_iterator.__next__()
        except StopIteration:
            raise StopIteration
        except ValueError as e:
            raise RuntimeError(f"Error receiving chunk from stream: {e}")

        try:
            str_line = chunk
            if isinstance(chunk, bytes):  # Handle binary data
                str_line = chunk.decode("utf-8")  # Convert bytes to string
                index = str_line.find("data:")
                if index != -1:
                    str_line = str_line[index:]

            if str_line.startswith("data:"):
                data_json = json.loads(str_line[5:])
                return self.chunk_parser(chunk=data_json)
            else:
                return GenericStreamingChunk(
                    text="",
                    is_finished=False,
                    finish_reason="",
                    usage=None,
                    index=0,
                    tool_use=None,
                )
        except StopIteration:
            raise StopIteration
        except ValueError as e:
            raise RuntimeError(f"Error parsing chunk: {e},\nReceived chunk: {chunk}")

    # Async iterator
    def __aiter__(self):
        self.async_response_iterator = self.streaming_response.__aiter__()
        return self

    async def __anext__(self):
        try:
            chunk = await self.async_response_iterator.__anext__()
        except StopAsyncIteration:
            raise StopAsyncIteration
        except ValueError as e:
            raise RuntimeError(f"Error receiving chunk from stream: {e}")

        try:
            str_line = chunk
            if isinstance(chunk, bytes):  # Handle binary data
                str_line = chunk.decode("utf-8")  # Convert bytes to string
                index = str_line.find("data:")
                if index != -1:
                    str_line = str_line[index:]

            if str_line.startswith("data:"):
                data_json = json.loads(str_line[5:])
                return self.chunk_parser(chunk=data_json)
            else:
                return GenericStreamingChunk(
                    text="",
                    is_finished=False,
                    finish_reason="",
                    usage=None,
                    index=0,
                    tool_use=None,
                )
        except StopAsyncIteration:
            raise StopAsyncIteration
        except ValueError as e:
            raise RuntimeError(f"Error parsing chunk: {e},\nReceived chunk: {chunk}")

    def convert_str_chunk_to_generic_chunk(self, chunk: str) -> GenericStreamingChunk:
        """
        Convert a string chunk to a GenericStreamingChunk

        Note: This is used for Anthropic pass through streaming logging

        We can move __anext__, and __next__ to use this function since it's common logic.
        Did not migrate them to minmize changes made in 1 PR.
        """
        str_line = chunk
        if isinstance(chunk, bytes):  # Handle binary data
            str_line = chunk.decode("utf-8")  # Convert bytes to string
            index = str_line.find("data:")
            if index != -1:
                str_line = str_line[index:]

        if str_line.startswith("data:"):
            data_json = json.loads(str_line[5:])
            return self.chunk_parser(chunk=data_json)
        else:
            return GenericStreamingChunk(
                text="",
                is_finished=False,
                finish_reason="",
                usage=None,
                index=0,
                tool_use=None,
            )