File size: 10,615 Bytes
e3278e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
"""
Translation logic for anthropic's `/v1/complete` endpoint

Litellm provider slug: `anthropic_text/<model_name>`
"""

import json
import time
from typing import AsyncIterator, Dict, Iterator, List, Optional, Union

import httpx

import litellm
from litellm.litellm_core_utils.prompt_templates.factory import (
    custom_prompt,
    prompt_factory,
)
from litellm.llms.base_llm.base_model_iterator import BaseModelResponseIterator
from litellm.llms.base_llm.chat.transformation import (
    BaseConfig,
    BaseLLMException,
    LiteLLMLoggingObj,
)
from litellm.types.llms.openai import AllMessageValues
from litellm.types.utils import (
    ChatCompletionToolCallChunk,
    ChatCompletionUsageBlock,
    GenericStreamingChunk,
    ModelResponse,
    Usage,
)


class AnthropicTextError(BaseLLMException):
    def __init__(self, status_code, message):
        self.status_code = status_code
        self.message = message
        self.request = httpx.Request(
            method="POST", url="https://api.anthropic.com/v1/complete"
        )
        self.response = httpx.Response(status_code=status_code, request=self.request)
        super().__init__(
            message=self.message,
            status_code=self.status_code,
            request=self.request,
            response=self.response,
        )  # Call the base class constructor with the parameters it needs


class AnthropicTextConfig(BaseConfig):
    """
    Reference: https://docs.anthropic.com/claude/reference/complete_post

    to pass metadata to anthropic, it's {"user_id": "any-relevant-information"}
    """

    max_tokens_to_sample: Optional[int] = (
        litellm.max_tokens
    )  # anthropic requires a default
    stop_sequences: Optional[list] = None
    temperature: Optional[int] = None
    top_p: Optional[int] = None
    top_k: Optional[int] = None
    metadata: Optional[dict] = None

    def __init__(
        self,
        max_tokens_to_sample: Optional[int] = 256,  # anthropic requires a default
        stop_sequences: Optional[list] = None,
        temperature: Optional[int] = None,
        top_p: Optional[int] = None,
        top_k: Optional[int] = None,
        metadata: Optional[dict] = None,
    ) -> None:
        locals_ = locals()
        for key, value in locals_.items():
            if key != "self" and value is not None:
                setattr(self.__class__, key, value)

    # makes headers for API call
    def validate_environment(
        self,
        headers: dict,
        model: str,
        messages: List[AllMessageValues],
        optional_params: dict,
        api_key: Optional[str] = None,
        api_base: Optional[str] = None,
    ) -> dict:
        if api_key is None:
            raise ValueError(
                "Missing Anthropic API Key - A call is being made to anthropic but no key is set either in the environment variables or via params"
            )
        _headers = {
            "accept": "application/json",
            "anthropic-version": "2023-06-01",
            "content-type": "application/json",
            "x-api-key": api_key,
        }
        headers.update(_headers)
        return headers

    def transform_request(
        self,
        model: str,
        messages: List[AllMessageValues],
        optional_params: dict,
        litellm_params: dict,
        headers: dict,
    ) -> dict:
        prompt = self._get_anthropic_text_prompt_from_messages(
            messages=messages, model=model
        )
        ## Load Config
        config = litellm.AnthropicTextConfig.get_config()
        for k, v in config.items():
            if (
                k not in optional_params
            ):  # completion(top_k=3) > anthropic_config(top_k=3) <- allows for dynamic variables to be passed in
                optional_params[k] = v

        data = {
            "model": model,
            "prompt": prompt,
            **optional_params,
        }

        return data

    def get_supported_openai_params(self, model: str):
        """
        Anthropic /complete API Ref: https://docs.anthropic.com/en/api/complete
        """
        return [
            "stream",
            "max_tokens",
            "max_completion_tokens",
            "stop",
            "temperature",
            "top_p",
            "extra_headers",
            "user",
        ]

    def map_openai_params(
        self,
        non_default_params: dict,
        optional_params: dict,
        model: str,
        drop_params: bool,
    ) -> dict:
        """
        Follows the same logic as the AnthropicConfig.map_openai_params method (which is the Anthropic /messages API)

        Note: the only difference is in the get supported openai params method between the AnthropicConfig and AnthropicTextConfig
        API Ref: https://docs.anthropic.com/en/api/complete
        """
        for param, value in non_default_params.items():
            if param == "max_tokens":
                optional_params["max_tokens_to_sample"] = value
            if param == "max_completion_tokens":
                optional_params["max_tokens_to_sample"] = value
            if param == "stream" and value is True:
                optional_params["stream"] = value
            if param == "stop" and (isinstance(value, str) or isinstance(value, list)):
                _value = litellm.AnthropicConfig()._map_stop_sequences(value)
                if _value is not None:
                    optional_params["stop_sequences"] = _value
            if param == "temperature":
                optional_params["temperature"] = value
            if param == "top_p":
                optional_params["top_p"] = value
            if param == "user":
                optional_params["metadata"] = {"user_id": value}

        return optional_params

    def transform_response(
        self,
        model: str,
        raw_response: httpx.Response,
        model_response: ModelResponse,
        logging_obj: LiteLLMLoggingObj,
        request_data: dict,
        messages: List[AllMessageValues],
        optional_params: dict,
        litellm_params: dict,
        encoding: str,
        api_key: Optional[str] = None,
        json_mode: Optional[bool] = None,
    ) -> ModelResponse:
        try:
            completion_response = raw_response.json()
        except Exception:
            raise AnthropicTextError(
                message=raw_response.text, status_code=raw_response.status_code
            )
        prompt = self._get_anthropic_text_prompt_from_messages(
            messages=messages, model=model
        )
        if "error" in completion_response:
            raise AnthropicTextError(
                message=str(completion_response["error"]),
                status_code=raw_response.status_code,
            )
        else:
            if len(completion_response["completion"]) > 0:
                model_response.choices[0].message.content = completion_response[  # type: ignore
                    "completion"
                ]
            model_response.choices[0].finish_reason = completion_response["stop_reason"]

        ## CALCULATING USAGE
        prompt_tokens = len(
            encoding.encode(prompt)
        )  ##[TODO] use the anthropic tokenizer here
        completion_tokens = len(
            encoding.encode(model_response["choices"][0]["message"].get("content", ""))
        )  ##[TODO] use the anthropic tokenizer here

        model_response.created = int(time.time())
        model_response.model = model
        usage = Usage(
            prompt_tokens=prompt_tokens,
            completion_tokens=completion_tokens,
            total_tokens=prompt_tokens + completion_tokens,
        )

        setattr(model_response, "usage", usage)
        return model_response

    def get_error_class(
        self, error_message: str, status_code: int, headers: Union[Dict, httpx.Headers]
    ) -> BaseLLMException:
        return AnthropicTextError(
            status_code=status_code,
            message=error_message,
        )

    @staticmethod
    def _is_anthropic_text_model(model: str) -> bool:
        return model == "claude-2" or model == "claude-instant-1"

    def _get_anthropic_text_prompt_from_messages(
        self, messages: List[AllMessageValues], model: str
    ) -> str:
        custom_prompt_dict = litellm.custom_prompt_dict
        if model in custom_prompt_dict:
            # check if the model has a registered custom prompt
            model_prompt_details = custom_prompt_dict[model]
            prompt = custom_prompt(
                role_dict=model_prompt_details["roles"],
                initial_prompt_value=model_prompt_details["initial_prompt_value"],
                final_prompt_value=model_prompt_details["final_prompt_value"],
                messages=messages,
            )
        else:
            prompt = prompt_factory(
                model=model, messages=messages, custom_llm_provider="anthropic"
            )

        return str(prompt)

    def get_model_response_iterator(
        self,
        streaming_response: Union[Iterator[str], AsyncIterator[str], ModelResponse],
        sync_stream: bool,
        json_mode: Optional[bool] = False,
    ):
        return AnthropicTextCompletionResponseIterator(
            streaming_response=streaming_response,
            sync_stream=sync_stream,
            json_mode=json_mode,
        )


class AnthropicTextCompletionResponseIterator(BaseModelResponseIterator):
    def chunk_parser(self, chunk: dict) -> GenericStreamingChunk:
        try:
            text = ""
            tool_use: Optional[ChatCompletionToolCallChunk] = None
            is_finished = False
            finish_reason = ""
            usage: Optional[ChatCompletionUsageBlock] = None
            provider_specific_fields = None
            index = int(chunk.get("index", 0))
            _chunk_text = chunk.get("completion", None)
            if _chunk_text is not None and isinstance(_chunk_text, str):
                text = _chunk_text
            finish_reason = chunk.get("stop_reason", None)
            if finish_reason is not None:
                is_finished = True
            returned_chunk = GenericStreamingChunk(
                text=text,
                tool_use=tool_use,
                is_finished=is_finished,
                finish_reason=finish_reason,
                usage=usage,
                index=index,
                provider_specific_fields=provider_specific_fields,
            )

            return returned_chunk

        except json.JSONDecodeError:
            raise ValueError(f"Failed to decode JSON from chunk: {chunk}")