File size: 6,899 Bytes
e3278e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import uuid
from typing import Any, Optional

from openai import AsyncAzureOpenAI, AzureOpenAI
from pydantic import BaseModel

import litellm
from litellm.litellm_core_utils.audio_utils.utils import get_audio_file_name
from litellm.types.utils import FileTypes
from litellm.utils import TranscriptionResponse, convert_to_model_response_object

from .azure import (
    AzureChatCompletion,
    get_azure_ad_token_from_oidc,
    select_azure_base_url_or_endpoint,
)


class AzureAudioTranscription(AzureChatCompletion):
    def audio_transcriptions(
        self,
        model: str,
        audio_file: FileTypes,
        optional_params: dict,
        logging_obj: Any,
        model_response: TranscriptionResponse,
        timeout: float,
        max_retries: int,
        api_key: Optional[str] = None,
        api_base: Optional[str] = None,
        api_version: Optional[str] = None,
        client=None,
        azure_ad_token: Optional[str] = None,
        atranscription: bool = False,
    ) -> TranscriptionResponse:
        data = {"model": model, "file": audio_file, **optional_params}

        # init AzureOpenAI Client
        azure_client_params = {
            "api_version": api_version,
            "azure_endpoint": api_base,
            "azure_deployment": model,
            "timeout": timeout,
        }

        azure_client_params = select_azure_base_url_or_endpoint(
            azure_client_params=azure_client_params
        )
        if api_key is not None:
            azure_client_params["api_key"] = api_key
        elif azure_ad_token is not None:
            if azure_ad_token.startswith("oidc/"):
                azure_ad_token = get_azure_ad_token_from_oidc(azure_ad_token)
            azure_client_params["azure_ad_token"] = azure_ad_token

        if max_retries is not None:
            azure_client_params["max_retries"] = max_retries

        if atranscription is True:
            return self.async_audio_transcriptions(  # type: ignore
                audio_file=audio_file,
                data=data,
                model_response=model_response,
                timeout=timeout,
                api_key=api_key,
                api_base=api_base,
                client=client,
                azure_client_params=azure_client_params,
                max_retries=max_retries,
                logging_obj=logging_obj,
            )
        if client is None:
            azure_client = AzureOpenAI(http_client=litellm.client_session, **azure_client_params)  # type: ignore
        else:
            azure_client = client

        ## LOGGING
        logging_obj.pre_call(
            input=f"audio_file_{uuid.uuid4()}",
            api_key=azure_client.api_key,
            additional_args={
                "headers": {"Authorization": f"Bearer {azure_client.api_key}"},
                "api_base": azure_client._base_url._uri_reference,
                "atranscription": True,
                "complete_input_dict": data,
            },
        )

        response = azure_client.audio.transcriptions.create(
            **data, timeout=timeout  # type: ignore
        )

        if isinstance(response, BaseModel):
            stringified_response = response.model_dump()
        else:
            stringified_response = TranscriptionResponse(text=response).model_dump()

        ## LOGGING
        logging_obj.post_call(
            input=get_audio_file_name(audio_file),
            api_key=api_key,
            additional_args={"complete_input_dict": data},
            original_response=stringified_response,
        )
        hidden_params = {"model": "whisper-1", "custom_llm_provider": "azure"}
        final_response: TranscriptionResponse = convert_to_model_response_object(response_object=stringified_response, model_response_object=model_response, hidden_params=hidden_params, response_type="audio_transcription")  # type: ignore
        return final_response

    async def async_audio_transcriptions(
        self,
        audio_file: FileTypes,
        data: dict,
        model_response: TranscriptionResponse,
        timeout: float,
        azure_client_params: dict,
        logging_obj: Any,
        api_key: Optional[str] = None,
        api_base: Optional[str] = None,
        client=None,
        max_retries=None,
    ):
        response = None
        try:
            if client is None:
                async_azure_client = AsyncAzureOpenAI(
                    **azure_client_params,
                    http_client=litellm.aclient_session,
                )
            else:
                async_azure_client = client

            ## LOGGING
            logging_obj.pre_call(
                input=f"audio_file_{uuid.uuid4()}",
                api_key=async_azure_client.api_key,
                additional_args={
                    "headers": {
                        "Authorization": f"Bearer {async_azure_client.api_key}"
                    },
                    "api_base": async_azure_client._base_url._uri_reference,
                    "atranscription": True,
                    "complete_input_dict": data,
                },
            )

            raw_response = (
                await async_azure_client.audio.transcriptions.with_raw_response.create(
                    **data, timeout=timeout
                )
            )  # type: ignore

            headers = dict(raw_response.headers)
            response = raw_response.parse()

            if isinstance(response, BaseModel):
                stringified_response = response.model_dump()
            else:
                stringified_response = TranscriptionResponse(text=response).model_dump()

            ## LOGGING
            logging_obj.post_call(
                input=get_audio_file_name(audio_file),
                api_key=api_key,
                additional_args={
                    "headers": {
                        "Authorization": f"Bearer {async_azure_client.api_key}"
                    },
                    "api_base": async_azure_client._base_url._uri_reference,
                    "atranscription": True,
                    "complete_input_dict": data,
                },
                original_response=stringified_response,
            )
            hidden_params = {"model": "whisper-1", "custom_llm_provider": "azure"}
            response = convert_to_model_response_object(
                _response_headers=headers,
                response_object=stringified_response,
                model_response_object=model_response,
                hidden_params=hidden_params,
                response_type="audio_transcription",
            )  # type: ignore
            return response
        except Exception as e:
            ## LOGGING
            logging_obj.post_call(
                input=input,
                api_key=api_key,
                original_response=str(e),
            )
            raise e